BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 26596511)

  • 21. XRCC1 and DNA polymerase beta in cellular protection against cytotoxic DNA single-strand breaks.
    Horton JK; Watson M; Stefanick DF; Shaughnessy DT; Taylor JA; Wilson SH
    Cell Res; 2008 Jan; 18(1):48-63. PubMed ID: 18166976
    [TBL] [Abstract][Full Text] [Related]  

  • 22. DNA synthesis and dRPase activities of polymerase beta are both essential for single-nucleotide patch base excision repair in mammalian cell extracts.
    Podlutsky AJ; Dianova II; Wilson SH; Bohr VA; Dianov GL
    Biochemistry; 2001 Jan; 40(3):809-13. PubMed ID: 11170398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The rate of base excision repair of uracil is controlled by the initiating glycosylase.
    Visnes T; Akbari M; Hagen L; Slupphaug G; Krokan HE
    DNA Repair (Amst); 2008 Nov; 7(11):1869-81. PubMed ID: 18721906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein-protein interactions and posttranslational modifications in mammalian base excision repair.
    Fan J; Wilson DM
    Free Radic Biol Med; 2005 May; 38(9):1121-38. PubMed ID: 15808410
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Unfilled gaps by polβ lead to aberrant ligation by LIG1 at the downstream steps of base excision repair pathway.
    Gulkis M; Martinez E; Almohdar D; Çağlayan M
    Nucleic Acids Res; 2024 Apr; 52(7):3810-3822. PubMed ID: 38366780
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Complementation of aprataxin deficiency by base excision repair enzymes in mitochondrial extracts.
    Çaglayan M; Prasad R; Krasich R; Longley MJ; Kadoda K; Tsuda M; Sasanuma H; Takeda S; Tano K; Copeland WC; Wilson SH
    Nucleic Acids Res; 2017 Sep; 45(17):10079-10088. PubMed ID: 28973450
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1).
    Klungland A; Lindahl T
    EMBO J; 1997 Jun; 16(11):3341-8. PubMed ID: 9214649
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Impact of polβ/XRCC1 Interaction Variants on the Efficiency of Nick Sealing by DNA Ligase IIIα in the Base Excision Repair Pathway.
    Almohdar D; Gulkis M; Ortiz A; Tang Q; Sobol RW; Çağlayan M
    J Mol Biol; 2024 Feb; 436(4):168410. PubMed ID: 38135179
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Impact of DNA ligase 1 and IIIα interactions with APE1 and polβ on the efficiency of base excision repair pathway at the downstream steps.
    Almohdar D; Murcia D; Tang Q; Ortiz A; Martinez E; Parwal T; Kamble P; Çağlayan M
    J Biol Chem; 2024 May; 300(6):107355. PubMed ID: 38718860
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human DNA ligases I and IIIα as determinants of accuracy and efficiency of base excision DNA repair.
    Moor NA; Vasil'eva IA; Lavrik OI
    Biochimie; 2024 Apr; 219():84-95. PubMed ID: 37573020
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways.
    Fortini P; Pascucci B; Parlanti E; D'Errico M; Simonelli V; Dogliotti E
    Mutat Res; 2003 Oct; 531(1-2):127-39. PubMed ID: 14637250
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The mechanism of switching among multiple BER pathways.
    Dogliotti E; Fortini P; Pascucci B; Parlanti E
    Prog Nucleic Acid Res Mol Biol; 2001; 68():3-27. PubMed ID: 11554307
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new approach utilizing real-time qPCR to detect in vitro base excision repair.
    Zhang H; Zang Y; Sun Y; Jin R; Wu H; Wang M; Li N; Chen D
    DNA Repair (Amst); 2010 Aug; 9(8):898-906. PubMed ID: 20634149
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The lyase activity of the DNA repair protein beta-polymerase protects from DNA-damage-induced cytotoxicity.
    Sobol RW; Prasad R; Evenski A; Baker A; Yang XP; Horton JK; Wilson SH
    Nature; 2000 Jun; 405(6788):807-10. PubMed ID: 10866204
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ischemic preconditioning induces XRCC1, DNA polymerase-beta, and DNA ligase III and correlates with enhanced base excision repair.
    Li N; Wu H; Yang S; Chen D
    DNA Repair (Amst); 2007 Sep; 6(9):1297-306. PubMed ID: 17412650
    [TBL] [Abstract][Full Text] [Related]  

  • 36. DNA polymerase beta is required for efficient DNA strand break repair induced by methyl methanesulfonate but not by hydrogen peroxide.
    Fortini P; Pascucci B; Belisario F; Dogliotti E
    Nucleic Acids Res; 2000 Aug; 28(16):3040-6. PubMed ID: 10931918
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Early steps in the DNA base excision/single-strand interruption repair pathway in mammalian cells.
    Hegde ML; Hazra TK; Mitra S
    Cell Res; 2008 Jan; 18(1):27-47. PubMed ID: 18166975
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DNA polymerase β-dependent cell survival independent of XRCC1 expression.
    Horton JK; Gassman NR; Dunigan BD; Stefanick DF; Wilson SH
    DNA Repair (Amst); 2015 Feb; 26():23-9. PubMed ID: 25541391
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Overexpression of PCNA Attenuates Oxidative Stress-Caused Delay of Gap-Filling during Repair of UV-Induced DNA Damage.
    Tsai YC; Wang YH; Liu YC
    J Nucleic Acids; 2017; 2017():8154646. PubMed ID: 28116145
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mammalian DNA beta-polymerase in base excision repair of alkylation damage.
    Sobol RW; Wilson SH
    Prog Nucleic Acid Res Mol Biol; 2001; 68():57-74. PubMed ID: 11554313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.