These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 26596550)

  • 21. Mechanisms underlying flexible adaptation of cognitive control: behavioral and neuroimaging evidence in a flanker task.
    Zurawska Vel Grajewska B; Sim EJ; Hoenig K; Herrnberger B; Kiefer M
    Brain Res; 2011 Nov; 1421():52-65. PubMed ID: 21981803
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Frequency Band-Specific Electrical Brain Stimulation Modulates Cognitive Control Processes.
    van Driel J; Sligte IG; Linders J; Elport D; Cohen MX
    PLoS One; 2015; 10(9):e0138984. PubMed ID: 26405801
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modulation of movement-related oscillatory signatures by cognitive interference in healthy aging.
    Arif Y; Son JJ; Okelberry HJ; Johnson HJ; Willett MP; Wiesman AI; Wilson TW
    Geroscience; 2024 Jun; 46(3):3021-3034. PubMed ID: 38175521
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Error-related medial frontal theta activity predicts cingulate-related structural connectivity.
    Cohen MX
    Neuroimage; 2011 Apr; 55(3):1373-83. PubMed ID: 21195774
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The neural correlates and functional integration of cognitive control in a Stroop task.
    Egner T; Hirsch J
    Neuroimage; 2005 Jan; 24(2):539-47. PubMed ID: 15627596
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Sequential effects in the Simon task: conflict adaptation or feature integration?
    Chen S; Melara RD
    Brain Res; 2009 Nov; 1297():89-100. PubMed ID: 19666010
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Common and distinct BOLD correlates of Simon and flanker conflicts which can(not) be reduced to time-on-task effects.
    Wojciechowski J; Jurewicz K; Dzianok P; Antonova I; Paluch K; Wolak T; Kublik E
    Hum Brain Mapp; 2024 Jan; 45(1):e26549. PubMed ID: 38224538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Parkinson's disease and age-related alterations in brain oscillations during a Simon task.
    Schmiedt-Fehr C; Schwendemann G; Herrmann M; Basar-Eroglu C
    Neuroreport; 2007 Feb; 18(3):277-81. PubMed ID: 17314671
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Utility of Cognitive Neural Features for Predicting Mental Health Behaviors.
    Kato R; Balasubramani PP; Ramanathan D; Mishra J
    Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590804
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spatio-temporal brain dynamics in a combined stimulus-stimulus and stimulus-response conflict task.
    Frühholz S; Godde B; Finke M; Herrmann M
    Neuroimage; 2011 Jan; 54(1):622-34. PubMed ID: 20691791
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neural control of enhanced filtering demands in a combined Flanker and Garner conflict task.
    Berron D; Frühholz S; Herrmann M
    PLoS One; 2015; 10(3):e0120582. PubMed ID: 25790026
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Glutamatergic correlates of gamma-band oscillatory activity during cognition: a concurrent ER-MRS and EEG study.
    Lally N; Mullins PG; Roberts MV; Price D; Gruber T; Haenschel C
    Neuroimage; 2014 Jan; 85 Pt 2():823-33. PubMed ID: 23891885
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electroencephalographic activity in a flanker interference task using Japanese orthography.
    Yamaguchi S; Toyoda G; Xu J; Kobayashi S; Henik A
    J Cogn Neurosci; 2002 Oct; 14(7):971-9. PubMed ID: 12419122
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The cognitive and neural time course of empathy and sympathy: an electrical neuroimaging study on self-other interaction.
    Thirioux B; Mercier MR; Blanke O; Berthoz A
    Neuroscience; 2014 May; 267():286-306. PubMed ID: 24583040
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms and neuronal networks involved in reactive and proactive cognitive control of interference in working memory.
    Irlbacher K; Kraft A; Kehrer S; Brandt SA
    Neurosci Biobehav Rev; 2014 Oct; 46 Pt 1():58-70. PubMed ID: 25003803
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cognitive and affective control in a flanker word task: common and dissociable brain mechanisms.
    Alguacil S; Tudela P; Ruz M
    Neuropsychologia; 2013 Aug; 51(9):1663-72. PubMed ID: 23747603
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Electroencephalography of response inhibition tasks: functional networks and cognitive contributions.
    Huster RJ; Enriquez-Geppert S; Lavallee CF; Falkenstein M; Herrmann CS
    Int J Psychophysiol; 2013 Mar; 87(3):217-33. PubMed ID: 22906815
    [TBL] [Abstract][Full Text] [Related]  

  • 38. On the interaction between sad mood and cognitive control: the effect of induced sadness on electrophysiological modulations underlying Stroop conflict processing.
    Nixon E; Liddle PF; Nixon NL; Liotti M
    Int J Psychophysiol; 2013 Mar; 87(3):313-26. PubMed ID: 23246586
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A multivariate analysis of age-related differences in functional networks supporting conflict resolution.
    Salami A; Rieckmann A; Fischer H; Bäckman L
    Neuroimage; 2014 Feb; 86():150-63. PubMed ID: 23939020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Do age-related changes contribute to the flanker effect?
    Hsieh S; Liang YC; Tsai YC
    Clin Neurophysiol; 2012 May; 123(5):960-72. PubMed ID: 21978651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.