BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

395 related articles for article (PubMed ID: 26596568)

  • 1. Cell sensing of physical properties at the nanoscale: Mechanisms and control of cell adhesion and phenotype.
    Di Cio S; Gautrot JE
    Acta Biomater; 2016 Jan; 30():26-48. PubMed ID: 26596568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differential integrin expression regulates cell sensing of the matrix nanoscale geometry.
    Di Cio S; Bøggild TML; Connelly J; Sutherland DS; Gautrot JE
    Acta Biomater; 2017 Mar; 50():280-292. PubMed ID: 27940195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanoscale engineering of extracellular matrix-mimetic bioadhesive surfaces and implants for tissue engineering.
    Shekaran A; Garcia AJ
    Biochim Biophys Acta; 2011 Mar; 1810(3):350-60. PubMed ID: 20435097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Current approaches for modulation of the nanoscale interface in the regulation of cell behavior.
    Donnelly H; Dalby MJ; Salmeron-Sanchez M; Sweeten PE
    Nanomedicine; 2018 Oct; 14(7):2455-2464. PubMed ID: 28552647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Emerging themes and unifying concepts underlying cell behavior regulation by the pericellular space.
    Scott KE; Rychel K; Ranamukhaarachchi S; Rangamani P; Fraley SI
    Acta Biomater; 2019 Sep; 96():81-98. PubMed ID: 31176842
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein-engineered biomaterials: nanoscale mimics of the extracellular matrix.
    Romano NH; Sengupta D; Chung C; Heilshorn SC
    Biochim Biophys Acta; 2011 Mar; 1810(3):339-49. PubMed ID: 20647034
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanophysical Cues in Extracellular Matrix Regulation of Cell Behavior.
    Wang T; Nanda SS; Papaefthymiou GC; Yi DK
    Chembiochem; 2020 May; 21(9):1254-1264. PubMed ID: 31868957
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The regulation of integrin-mediated osteoblast focal adhesion and focal adhesion kinase expression by nanoscale topography.
    Lim JY; Dreiss AD; Zhou Z; Hansen JC; Siedlecki CA; Hengstebeck RW; Cheng J; Winograd N; Donahue HJ
    Biomaterials; 2007 Apr; 28(10):1787-97. PubMed ID: 17218005
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolving insights in cell-matrix interactions: elucidating how non-soluble properties of the extracellular niche direct stem cell fate.
    Walters NJ; Gentleman E
    Acta Biomater; 2015 Jan; 11():3-16. PubMed ID: 25266503
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering the cellular mechanical microenvironment - from bulk mechanics to the nanoscale.
    Matellan C; Del Río Hernández AE
    J Cell Sci; 2019 Apr; 132(9):. PubMed ID: 31040223
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoscale tissue engineering: spatial control over cell-materials interactions.
    Wheeldon I; Farhadi A; Bick AG; Jabbari E; Khademhosseini A
    Nanotechnology; 2011 May; 22(21):212001. PubMed ID: 21451238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomaterial-based physical regulation of macrophage behaviour.
    Zhou H; Xue Y; Dong L; Wang C
    J Mater Chem B; 2021 May; 9(17):3608-3621. PubMed ID: 33908577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Amyloid Fibrils: Versatile Biomaterials for Cell Adhesion and Tissue Engineering Applications.
    Das S; Jacob RS; Patel K; Singh N; Maji SK
    Biomacromolecules; 2018 Jun; 19(6):1826-1839. PubMed ID: 29701992
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanoscale surfacing for regenerative medicine.
    Yang Y; Leong KW
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2010; 2(5):478-95. PubMed ID: 20803682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Control of Protein and Cell Interaction with Nanostructured Surfaces by Cluster Assembling.
    Schulte C; Podestà A; Lenardi C; Tedeschi G; Milani P
    Acc Chem Res; 2017 Feb; 50(2):231-239. PubMed ID: 28116907
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoscale microenvironment engineering based on layer-by-layer self-assembly to regulate hair follicle stem cell fate for regenerative medicine.
    Chen P; Miao Y; Zhang F; Huang J; Chen Y; Fan Z; Yang L; Wang J; Hu Z
    Theranostics; 2020; 10(25):11673-11689. PubMed ID: 33052240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of ECM proteins and protein fragments in guiding cell behavior in regenerative medicine.
    Barker TH
    Biomaterials; 2011 Jun; 32(18):4211-4. PubMed ID: 21515169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering substrate topography at the micro- and nanoscale to control cell function.
    Bettinger CJ; Langer R; Borenstein JT
    Angew Chem Int Ed Engl; 2009; 48(30):5406-15. PubMed ID: 19492373
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glycomics: New Challenges and Opportunities in Regenerative Medicine.
    Russo L; Cipolla L
    Chemistry; 2016 Sep; 22(38):13380-8. PubMed ID: 27400428
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance.
    Kennedy KM; Bhaw-Luximon A; Jhurry D
    Acta Biomater; 2017 Mar; 50():41-55. PubMed ID: 28011142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.