These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 26596619)

  • 1. Structural and Thermodynamic Characteristics That Seed Aggregation of Amyloid-β Protein in Water.
    Chong SH; Park M; Ham S
    J Chem Theory Comput; 2012 Feb; 8(2):724-34. PubMed ID: 26596619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct role of hydration water in protein misfolding and aggregation revealed by fluctuating thermodynamics analysis.
    Chong SH; Ham S
    Acc Chem Res; 2015 Apr; 48(4):956-65. PubMed ID: 25844814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterizing amyloid-beta protein misfolding from molecular dynamics simulations with explicit water.
    Lee C; Ham S
    J Comput Chem; 2011 Jan; 32(2):349-55. PubMed ID: 20734314
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterizing the structural and thermodynamic properties of Aβ42 and Aβ40.
    Lin Y; Im H; Diem LT; Ham S
    Biochem Biophys Res Commun; 2019 Mar; 510(3):442-448. PubMed ID: 30722990
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Atomic decomposition of the protein solvation free energy and its application to amyloid-beta protein in water.
    Chong SH; Ham S
    J Chem Phys; 2011 Jul; 135(3):034506. PubMed ID: 21787012
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dual effects of familial Alzheimer's disease mutations (D7H, D7N, and H6R) on amyloid β peptide: correlation dynamics and zinc binding.
    Xu L; Chen Y; Wang X
    Proteins; 2014 Dec; 82(12):3286-97. PubMed ID: 25137638
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Abeta42 is more rigid than Abeta40 at the C terminus: implications for Abeta aggregation and toxicity.
    Yan Y; Wang C
    J Mol Biol; 2006 Dec; 364(5):853-62. PubMed ID: 17046788
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatial decomposition of solvation free energy based on the 3D integral equation theory of molecular liquid: application to miniproteins.
    Yamazaki T; Kovalenko A
    J Phys Chem B; 2011 Jan; 115(2):310-8. PubMed ID: 21166382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Methyl dynamics of the amyloid-beta peptides Abeta40 and Abeta42.
    Yan Y; Liu J; McCallum SA; Yang D; Wang C
    Biochem Biophys Res Commun; 2007 Oct; 362(2):410-4. PubMed ID: 17709094
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How Does the Mono-Triazole Derivative Modulate Aβ
    Kaur A; Kaur A; Goyal D; Goyal B
    ACS Omega; 2020 Jun; 5(25):15606-15619. PubMed ID: 32637837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters.
    Matsuzaki K
    Acc Chem Res; 2014 Aug; 47(8):2397-404. PubMed ID: 25029558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of LVFFARK and LVFFARK-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity.
    Xiong N; Dong XY; Zheng J; Liu FF; Sun Y
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5650-62. PubMed ID: 25700145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Solvent Composition Effects on the Structural Properties of the Aβ42 Monomer from the 3D-RISM-KH Molecular Theory of Solvation.
    Blinov N; Wishart DS; Kovalenko A
    J Phys Chem B; 2019 Mar; 123(11):2491-2506. PubMed ID: 30811210
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and thermodynamic investigations on the aggregation and folding of acylphosphatase by molecular dynamics simulations and solvation free energy analysis.
    Chong SH; Lee C; Kang G; Park M; Ham S
    J Am Chem Soc; 2011 May; 133(18):7075-83. PubMed ID: 21500781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of the Arctic (E22-->G) mutation on amyloid beta-protein folding: discrete molecular dynamics study.
    Lam AR; Teplow DB; Stanley HE; Urbanc B
    J Am Chem Soc; 2008 Dec; 130(51):17413-22. PubMed ID: 19053400
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of a water-soluble fullerene derivative with amyloid-β protofibrils: dynamics, binding mechanism, and the resulting salt-bridge disruption.
    Zhou X; Xi W; Luo Y; Cao S; Wei G
    J Phys Chem B; 2014 Jun; 118(24):6733-41. PubMed ID: 24857343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomic-level investigations on the amyloid-β dimerization process and its driving forces in water.
    Chong SH; Ham S
    Phys Chem Chem Phys; 2012 Feb; 14(5):1573-5. PubMed ID: 22186967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generic hydrophobic residues are sufficient to promote aggregation of the Alzheimer's Abeta42 peptide.
    Kim W; Hecht MH
    Proc Natl Acad Sci U S A; 2006 Oct; 103(43):15824-9. PubMed ID: 17038501
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amyloid-β peptide structure in aqueous solution varies with fragment size.
    Wise-Scira O; Xu L; Kitahara T; Perry G; Coskuner O
    J Chem Phys; 2011 Nov; 135(20):205101. PubMed ID: 22128957
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.