These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 26596620)

  • 1. Comparison of Cellulose Iβ Simulations with Three Carbohydrate Force Fields.
    Matthews JF; Beckham GT; Bergenstråhle-Wohlert M; Brady JW; Himmel ME; Crowley MF
    J Chem Theory Comput; 2012 Feb; 8(2):735-48. PubMed ID: 26596620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-temperature behavior of cellulose I.
    Matthews JF; Bergenstråhle M; Beckham GT; Himmel ME; Nimlos MR; Brady JW; Crowley MF
    J Phys Chem B; 2011 Mar; 115(10):2155-66. PubMed ID: 21338135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal response in crystalline Ibeta cellulose: a molecular dynamics study.
    Bergenstråhle M; Berglund LA; Mazeau K
    J Phys Chem B; 2007 Aug; 111(30):9138-45. PubMed ID: 17628097
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulating infrared spectra and hydrogen bonding in cellulose Iβ at elevated temperatures.
    Agarwal V; Huber GW; Conner WC; Auerbach SM
    J Chem Phys; 2011 Oct; 135(13):134506. PubMed ID: 21992323
    [TBL] [Abstract][Full Text] [Related]  

  • 5. REACH coarse-grained simulation of a cellulose fiber.
    Glass DC; Moritsugu K; Cheng X; Smith JC
    Biomacromolecules; 2012 Sep; 13(9):2634-44. PubMed ID: 22937726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unique aspects of the structure and dynamics of elementary Iβ cellulose microfibrils revealed by computational simulations.
    Oehme DP; Downton MT; Doblin MS; Wagner J; Gidley MJ; Bacic A
    Plant Physiol; 2015 May; 168(1):3-17. PubMed ID: 25786828
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparative study of two different force fields on structural and thermodynamics character of H1 peptide via molecular dynamics simulations.
    Cao Z; Wang J
    J Biomol Struct Dyn; 2010 Apr; 27(5):651-61. PubMed ID: 20085382
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the simulations of cellulosic crystals with three carbohydrate force fields.
    Miyamoto H; Schnupf U; Crowley MF; Brady JW
    Carbohydr Res; 2016 Mar; 422():17-23. PubMed ID: 26845704
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse-grained model for the interconversion between native and liquid ammonia-treated crystalline cellulose.
    Bellesia G; Chundawat SP; Langan P; Redondo A; Dale BE; Gnanakaran S
    J Phys Chem B; 2012 Jul; 116(28):8031-7. PubMed ID: 22712833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modelling of beta-D-glucopyranose ring distortion in different force fields: a metadynamics study.
    Spiwok V; Králová B; Tvaroska I
    Carbohydr Res; 2010 Feb; 345(4):530-7. PubMed ID: 20053394
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of solvation and gelation behavior of methylcellulose using atomistic molecular dynamics simulations.
    Huang W; Dalal IS; Larson RG
    J Phys Chem B; 2014 Dec; 118(48):13992-4008. PubMed ID: 25390072
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular dynamics of DNA: comparison of force fields and terminal nucleotide definitions.
    Ricci CG; de Andrade AS; Mottin M; Netz PA
    J Phys Chem B; 2010 Aug; 114(30):9882-93. PubMed ID: 20614923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Temperature Dependence of Hydroxymethyl Group Rotamer Populations in Cellooligomers.
    Angles d'Ortoli T; Sjöberg NA; Vasiljeva P; Lindman J; Widmalm G; Bergenstråhle-Wohlert M; Wohlert J
    J Phys Chem B; 2015 Jul; 119(30):9559-70. PubMed ID: 26114206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MARTINI coarse-grained model for crystalline cellulose microfibers.
    López CA; Bellesia G; Redondo A; Langan P; Chundawat SP; Dale BE; Marrink SJ; Gnanakaran S
    J Phys Chem B; 2015 Jan; 119(2):465-73. PubMed ID: 25417548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantitative Assessment of the Conformational Heterogeneity in Amylose across Force Fields.
    Koneru JK; Zhu X; Mondal J
    J Chem Theory Comput; 2019 Nov; 15(11):6203-6212. PubMed ID: 31560849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hybrid simulations: combining atomistic and coarse-grained force fields using virtual sites.
    Rzepiela AJ; Louhivuori M; Peter C; Marrink SJ
    Phys Chem Chem Phys; 2011 Jun; 13(22):10437-48. PubMed ID: 21494747
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of carbohydrates, from molecular docking to dynamics in water.
    Sapay N; Nurisso A; Imberty A
    Methods Mol Biol; 2013; 924():469-83. PubMed ID: 23034760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers.
    Hansen HS; Hünenberger PH
    J Comput Chem; 2011 Apr; 32(6):998-1032. PubMed ID: 21387332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GROMOS 53A6GLYC, an Improved GROMOS Force Field for Hexopyranose-Based Carbohydrates.
    Pol-Fachin L; Rusu VH; Verli H; Lins RD
    J Chem Theory Comput; 2012 Nov; 8(11):4681-90. PubMed ID: 26605624
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A priori crystal structure prediction of native celluloses.
    Viëtor RJ; Mazeau K; Lakin M; Pérez S
    Biopolymers; 2000 Oct; 54(5):342-54. PubMed ID: 10935974
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.