These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
188 related articles for article (PubMed ID: 26596710)
1. Discovery of novel quinoline-based mTOR inhibitors via introducing intra-molecular hydrogen bonding scaffold (iMHBS): The design, synthesis and biological evaluation. Ma X; Lv X; Qiu N; Yang B; He Q; Hu Y Bioorg Med Chem; 2015 Dec; 23(24):7585-96. PubMed ID: 26596710 [TBL] [Abstract][Full Text] [Related]
2. Design, synthesis and biological evaluation of novel 4-alkynyl-quinoline derivatives as PI3K/mTOR dual inhibitors. Lv X; Ying H; Ma X; Qiu N; Wu P; Yang B; Hu Y Eur J Med Chem; 2015 Jun; 99():36-50. PubMed ID: 26046312 [TBL] [Abstract][Full Text] [Related]
3. Discovery of 2-(2-aminopyrimidin-5-yl)-4-morpholino-N-(pyridin-3-yl)quinazolin-7-amines as novel PI3K/mTOR inhibitors and anticancer agents. Peng W; Tu ZC; Long ZJ; Liu Q; Lu G Eur J Med Chem; 2016 Jan; 108():644-654. PubMed ID: 26731167 [TBL] [Abstract][Full Text] [Related]
5. Quinazolines with intra-molecular hydrogen bonding scaffold (iMHBS) as PI3K/mTOR dual inhibitors. Liu KK; Huang X; Bagrodia S; Chen JH; Greasley S; Cheng H; Sun S; Knighton D; Rodgers C; Rafidi K; Zou A; Xiao J; Yan S Bioorg Med Chem Lett; 2011 Feb; 21(4):1270-4. PubMed ID: 21269826 [TBL] [Abstract][Full Text] [Related]
6. Structural optimization towards promising β-methyl-4-acrylamido quinoline derivatives as PI3K/mTOR dual inhibitors for anti-cancer therapy: The in vitro and in vivo biological evaluation. He R; Xu B; Ping L; Lv X Eur J Med Chem; 2021 Mar; 214():113249. PubMed ID: 33561608 [TBL] [Abstract][Full Text] [Related]
7. Synthesis and anticancer effects evaluation of 1-alkyl-3-(6-(2-methoxy-3-sulfonylaminopyridin-5-yl)benzo[d]thiazol-2-yl)urea as anticancer agents with low toxicity. Xie XX; Li H; Wang J; Mao S; Xin MH; Lu SM; Mei QB; Zhang SQ Bioorg Med Chem; 2015 Oct; 23(19):6477-85. PubMed ID: 26321603 [TBL] [Abstract][Full Text] [Related]
8. Design, synthesis and biological evaluation of thieno[3,2-d]pyrimidine derivatives containing aroyl hydrazone or aryl hydrazide moieties for PI3K and mTOR dual inhibition. Han Y; Tian Y; Wang R; Fu S; Jiang J; Dong J; Qin M; Hou Y; Zhao Y Bioorg Chem; 2020 Nov; 104():104197. PubMed ID: 32927132 [TBL] [Abstract][Full Text] [Related]
9. Design, synthesis and biological evaluation of novel 4-phenoxy-6,7-disubstituted quinolines possessing (thio)semicarbazones as c-Met kinase inhibitors. Zhai X; Bao G; Wang L; Cheng M; Zhao M; Zhao S; Zhou H; Gong P Bioorg Med Chem; 2016 Mar; 24(6):1331-45. PubMed ID: 26897090 [TBL] [Abstract][Full Text] [Related]
10. Discovery and SAR exploration of a novel series of imidazo[4,5-b]pyrazin-2-ones as potent and selective mTOR kinase inhibitors. Mortensen DS; Perrin-Ninkovic SM; Harris R; Lee BG; Shevlin G; Hickman M; Khambatta G; Bisonette RR; Fultz KE; Sankar S Bioorg Med Chem Lett; 2011 Nov; 21(22):6793-9. PubMed ID: 21978683 [TBL] [Abstract][Full Text] [Related]
11. Synthesis and structure-activity relationships of dual PI3K/mTOR inhibitors based on a 4-amino-6-methyl-1,3,5-triazine sulfonamide scaffold. Wurz RP; Liu L; Yang K; Nishimura N; Bo Y; Pettus LH; Caenepeel S; Freeman DJ; McCarter JD; Mullady EL; Miguel TS; Wang L; Zhang N; Andrews KL; Whittington DA; Jiang J; Subramanian R; Hughes PE; Norman MH Bioorg Med Chem Lett; 2012 Sep; 22(17):5714-20. PubMed ID: 22832322 [TBL] [Abstract][Full Text] [Related]
12. New quinoline/chalcone hybrids as anti-cancer agents: Design, synthesis, and evaluations of cytotoxicity and PI3K inhibitory activity. Abbas SH; Abd El-Hafeez AA; Shoman ME; Montano MM; Hassan HA Bioorg Chem; 2019 Feb; 82():360-377. PubMed ID: 30428415 [TBL] [Abstract][Full Text] [Related]
13. Discovery of a series of N-(5-(quinolin-6-yl)pyridin-3-yl)benzenesulfonamides as PI3K/mTOR dual inhibitors. Zhang J; Lv X; Ma X; Hu Y Eur J Med Chem; 2017 Feb; 127():509-520. PubMed ID: 28109945 [TBL] [Abstract][Full Text] [Related]
14. Inhibition of tumor cell growth, proliferation and migration by X-387, a novel active-site inhibitor of mTOR. Chen SM; Liu JL; Wang X; Liang C; Ding J; Meng LH Biochem Pharmacol; 2012 May; 83(9):1183-94. PubMed ID: 22305748 [TBL] [Abstract][Full Text] [Related]
15. 4-(N-Phenyl-N'-substituted benzenesulfonyl)-6-(4-hydroxyphenyl)quinolines as inhibitors of mammalian target of rapamycin. Venkateswarlu V; Pathania AS; Aravinda Kumar KA; Mahajan P; Nargotra A; Vishwakarma RA; Malik FA; Sawant SD Bioorg Med Chem; 2015 Aug; 23(15):4237-4247. PubMed ID: 26162498 [TBL] [Abstract][Full Text] [Related]
16. Design, Synthesis, and Biological Evaluation of Imidazo[1,2- Yu Y; Han Y; Zhang F; Gao Z; Zhu T; Dong S; Ma M J Med Chem; 2020 Mar; 63(6):3028-3046. PubMed ID: 32069401 [TBL] [Abstract][Full Text] [Related]
17. Distinct signaling mechanisms of mTORC1 and mTORC2 in glioblastoma multiforme: a tale of two complexes. Jhanwar-Uniyal M; Gillick JL; Neil J; Tobias M; Thwing ZE; Murali R Adv Biol Regul; 2015 Jan; 57():64-74. PubMed ID: 25442674 [TBL] [Abstract][Full Text] [Related]
18. Synthesis and antitumor activity evaluation of PI3K inhibitors containing 3-substituted quinazolin-4(3H)-one moiety. Zhang H; Xin MH; Xie XX; Mao S; Zuo SJ; Lu SM; Zhang SQ Bioorg Med Chem; 2015 Dec; 23(24):7765-76. PubMed ID: 26652969 [TBL] [Abstract][Full Text] [Related]
19. Design, synthesis, in-vitro antiproliferative activity and kinase profile of new picolinamide based 2-amido and ureido quinoline derivatives. El-Damasy AK; Seo SH; Cho NC; Kang SB; Pae AN; Kim KS; Keum G Eur J Med Chem; 2015 Aug; 101():754-68. PubMed ID: 26218653 [TBL] [Abstract][Full Text] [Related]
20. Design, synthesis and antiproliferative activity evaluation of m-(4-morpholinyl-1,3,5-triazin-2-yl)benzamides in vitro. Wang XM; Xu J; Xin MH; Lu SM; Zhang SQ Bioorg Med Chem Lett; 2015 Apr; 25(8):1730-1735. PubMed ID: 25765909 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]