These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 26596739)

  • 1. Momentum Distribution as a Fingerprint of Quantum Delocalization in Enzymatic Reactions: Open-Chain Path-Integral Simulations of Model Systems and the Hydride Transfer in Dihydrofolate Reductase.
    Engel H; Doron D; Kohen A; Major DT
    J Chem Theory Comput; 2012 Apr; 8(4):1223-34. PubMed ID: 26596739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Quantum and Classical Simulations of the Dihydrofolate Reductase Catalyzed Hydride Transfer Reaction on an Accurate Semi-Empirical Potential Energy Surface.
    Doron D; Major DT; Kohen A; Thiel W; Wu X
    J Chem Theory Comput; 2011 Oct; 7(10):3420-37. PubMed ID: 26598171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase.
    Garcia-Viloca M; Truhlar DG; Gao J
    Biochemistry; 2003 Nov; 42(46):13558-75. PubMed ID: 14622003
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Collective Reaction Coordinate for Hybrid Quantum and Molecular Mechanics Simulations: A Case Study of the Hydride Transfer in Dihydrofolate Reductase.
    Doron D; Kohen A; Major DT
    J Chem Theory Comput; 2012 Jul; 8(7):2484-96. PubMed ID: 26588977
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hybrid Quantum and Classical Simulations of the Formate Dehydrogenase Catalyzed Hydride Transfer Reaction on an Accurate Semiempirical Potential Energy Surface.
    Vardi-Kilshtain A; Major DT; Kohen A; Engel H; Doron D
    J Chem Theory Comput; 2012 Nov; 8(11):4786-96. PubMed ID: 26605631
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hybrid quantum/classical path integral approach for simulation of hydrogen transfer reactions in enzymes.
    Wang Q; Hammes-Schiffer S
    J Chem Phys; 2006 Nov; 125(18):184102. PubMed ID: 17115733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tunneling and delocalization effects in hydrogen bonded systems: a study in position and momentum space.
    Morrone JA; Lin L; Car R
    J Chem Phys; 2009 May; 130(20):204511. PubMed ID: 19485461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The importance of ensemble averaging in enzyme kinetics.
    Masgrau L; Truhlar DG
    Acc Chem Res; 2015 Feb; 48(2):431-8. PubMed ID: 25539028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calculation of a Complete Enzymic Reaction Surface:  Reaction and Activation Free Energies for Hydride-Ion Transfer in Dihydrofolate Reductase.
    Cummins PL; Rostov IV; Gready JE
    J Chem Theory Comput; 2007 May; 3(3):1203-11. PubMed ID: 26627439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of the donor-acceptor distance and dynamics on hydride tunneling in the dihydrofolate reductase catalyzed reaction.
    Stojković V; Perissinotti LL; Willmer D; Benkovic SJ; Kohen A
    J Am Chem Soc; 2012 Jan; 134(3):1738-45. PubMed ID: 22171795
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of coupled motions in Escherichia coli and Bacillus subtilis dihydrofolate reductase.
    Watney JB; Hammes-Schiffer S
    J Phys Chem B; 2006 May; 110(20):10130-8. PubMed ID: 16706474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectroscopic fingerprints of toroidal nuclear quantum delocalization via ab initio path integral simulations.
    Schütt O; Sebastiani D
    J Comput Chem; 2013 Apr; 34(10):827-35. PubMed ID: 23280958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydride transfer reaction catalyzed by hyperthermophilic dihydrofolate reductase is dominated by quantum mechanical tunneling and is promoted by both inter- and intramonomeric correlated motions.
    Pang J; Pu J; Gao J; Truhlar DG; Allemann RK
    J Am Chem Soc; 2006 Jun; 128(24):8015-23. PubMed ID: 16771517
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Free energy simulations of active-site mutants of dihydrofolate reductase.
    Doron D; Stojković V; Gakhar L; Vardi-Kilshtain A; Kohen A; Major DT
    J Phys Chem B; 2015 Jan; 119(3):906-16. PubMed ID: 25382260
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum-classical simulation methods for hydrogen transfer in enzymes: a case study of dihydrofolate reductase.
    Hammes-Schiffer S
    Curr Opin Struct Biol; 2004 Apr; 14(2):192-201. PubMed ID: 15093834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Path Integral Simulations of Proton Transfer Reactions in Aqueous Solution Using Combined QM/MM Potentials.
    Major DT; Garcia-Viloca M; Gao J
    J Chem Theory Comput; 2006 Mar; 2(2):236-45. PubMed ID: 26626510
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamics of hydrogen adsorption in slit-like carbon nanopores at 77 K. Classical versus path-integral Monte Carlo simulations.
    Kowalczyk P; Gauden PA; Terzyk AP; Bhatia SK
    Langmuir; 2007 Mar; 23(7):3666-72. PubMed ID: 17323981
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Path-Integral Calculations of Nuclear Quantum Effects in Model Systems, Small Molecules, and Enzymes via Gradient-Based Forward Corrector Algorithms.
    Azuri A; Engel H; Doron D; Major DT
    J Chem Theory Comput; 2011 May; 7(5):1273-86. PubMed ID: 26610122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixed quantum-classical simulation of the hydride transfer reaction catalyzed by dihydrofolate reductase based on a mapped system-harmonic bath model.
    Xu Y; Song K; Shi Q
    J Chem Phys; 2018 Mar; 148(10):102322. PubMed ID: 29544288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulations of remote mutants of dihydrofolate reductase reveal the nature of a network of residues coupled to hydride transfer.
    Roston D; Kohen A; Doron D; Major DT
    J Comput Chem; 2014 Jul; 35(19):1411-7. PubMed ID: 24798860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.