These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

761 related articles for article (PubMed ID: 26597002)

  • 21. Advanced waveform decomposition for high-speed videoendoscopy analysis.
    Ikuma T; Kunduk M; McWhorter AJ
    J Voice; 2013 May; 27(3):369-75. PubMed ID: 23490133
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Phonovibrography: mapping high-speed movies of vocal fold vibrations into 2-D diagrams for visualizing and analyzing the underlying laryngeal dynamics.
    Lohscheller J; Eysholdt U; Toy H; Dollinger M
    IEEE Trans Med Imaging; 2008 Mar; 27(3):300-9. PubMed ID: 18334426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The pitch rise paradigm: a new task for real-time endoscopy of non-stationary phonation.
    Rasp O; Lohscheller J; Doellinger M; Eysholdt U; Hoppe U
    Folia Phoniatr Logop; 2006; 58(3):175-85. PubMed ID: 16636565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hierarchical Classification and System Combination for Automatically Identifying Physiological and Neuromuscular Laryngeal Pathologies.
    Cordeiro H; Fonseca J; Guimarães I; Meneses C
    J Voice; 2017 May; 31(3):384.e9-384.e14. PubMed ID: 27743845
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Objective measures of laryngeal imaging: what have we learned since Dr. Paul Moore.
    Woo P
    J Voice; 2014 Jan; 28(1):69-81. PubMed ID: 24094798
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tracing vocal fold vibrations using level set segmentation method.
    Shi T; Kim HJ; Murry T; Woo P; Yan Y
    Int J Numer Method Biomed Eng; 2015 Jun; 31(6):. PubMed ID: 25773889
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A wavelet-based approach for a continuous analysis of phonovibrograms.
    Unger J; Meyer T; Doellinger M; Hecker DJ; Schick B; Lohscheller J
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4410-3. PubMed ID: 23366905
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Spectral analysis of digital kymography in normal adult vocal fold vibration.
    Chen W; Woo P; Murry T
    J Voice; 2014 May; 28(3):356-61. PubMed ID: 24412039
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spatiotemporal analysis of high-speed videolaryngoscopic imaging of organic pathologies in males.
    Bohr C; Kräck A; Dubrovskiy D; Eysholdt U; Svec J; Psychogios G; Ziethe A; Döllinger M
    J Speech Lang Hear Res; 2014 Aug; 57(4):1148-61. PubMed ID: 24686496
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quantitative evaluation of video laryngostroboscopy: reliability of the basic parameters.
    Uloza V; Vegienė A; Pribuišienė R; Šaferis V
    J Voice; 2013 May; 27(3):361-8. PubMed ID: 23465526
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Detection of Vocal Fold Image Obstructions in High-Speed Videoendoscopy During Connected Speech in Adductor Spasmodic Dysphonia: A Convolutional Neural Networks Approach.
    Yousef AM; Deliyski DD; Zacharias SRC; Naghibolhosseini M
    J Voice; 2024 Jul; 38(4):951-962. PubMed ID: 35304042
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Imaging and Analysis of Human Vocal Fold Vibration Using Two-Dimensional (2D) Scanning Videokymography.
    Park HJ; Cha W; Kim GH; Jeon GR; Lee BJ; Shin BJ; Choi YG; Wang SG
    J Voice; 2016 May; 30(3):345-53. PubMed ID: 26239969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automatic tracing of vocal-fold motion from high-speed digital images.
    Yan Y; Chen X; Bless D
    IEEE Trans Biomed Eng; 2006 Jul; 53(7):1394-400. PubMed ID: 16830943
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Utility of Laryngeal High-speed Videoendoscopy in Clinical Voice Assessment.
    Zacharias SRC; Deliyski DD; Gerlach TT
    J Voice; 2018 Mar; 32(2):216-220. PubMed ID: 28596101
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Automatic diagnosis of vocal fold paresis by employing phonovibrogram features and machine learning methods.
    Voigt D; Döllinger M; Yang A; Eysholdt U; Lohscheller J
    Comput Methods Programs Biomed; 2010 Sep; 99(3):275-88. PubMed ID: 20138386
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Model-based classification of nonstationary vocal fold vibrations.
    Wurzbacher T; Schwarz R; Döllinger M; Hoppe U; Eysholdt U; Lohscheller J
    J Acoust Soc Am; 2006 Aug; 120(2):1012-27. PubMed ID: 16938988
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multiparametric analysis of vocal fold vibrations in healthy and disordered voices in high-speed imaging.
    Inwald EC; Döllinger M; Schuster M; Eysholdt U; Bohr C
    J Voice; 2011 Sep; 25(5):576-90. PubMed ID: 20728308
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-cost high-speed imaging system for observing vocal fold vibration in voice disorders.
    Kaneko K; Sakaguchi K; Inoue M; Takahashi H
    ORL J Otorhinolaryngol Relat Spec; 2012; 74(4):208-10. PubMed ID: 22868889
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Computerized Analysis of Vocal Folds Vibration From Laryngeal Videostroboscopy.
    Gora S; Yavin N; Elad D; Wolf M; Primov-Fever A
    J Voice; 2016 Jul; 30(4):478-84. PubMed ID: 26159427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of Volume, Pitch, and Phonation Type on Oscillation Initiation and Termination Phases Investigated With High-speed Videoendoscopy.
    Kunduk M; Ikuma T; Blouin DC; McWhorter AJ
    J Voice; 2017 May; 31(3):313-322. PubMed ID: 27671752
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.