These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 26597159)

  • 1. The relationship between stochastic and deterministic quasi-steady state approximations.
    Kim JK; Josić K; Bennett MR
    BMC Syst Biol; 2015 Nov; 9():87. PubMed ID: 26597159
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The validity of quasi-steady-state approximations in discrete stochastic simulations.
    Kim JK; Josić K; Bennett MR
    Biophys J; 2014 Aug; 107(3):783-793. PubMed ID: 25099817
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Universally valid reduction of multiscale stochastic biochemical systems using simple non-elementary propensities.
    Song YM; Hong H; Kim JK
    PLoS Comput Biol; 2021 Oct; 17(10):e1008952. PubMed ID: 34662330
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two classes of quasi-steady-state model reductions for stochastic kinetics.
    Mastny EA; Haseltine EL; Rawlings JB
    J Chem Phys; 2007 Sep; 127(9):094106. PubMed ID: 17824731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the precision of quasi steady state assumptions in stochastic dynamics.
    Agarwal A; Adams R; Castellani GC; Shouval HZ
    J Chem Phys; 2012 Jul; 137(4):044105. PubMed ID: 22852595
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quasi-Steady-State Approximations Derived from the Stochastic Model of Enzyme Kinetics.
    Kang HW; KhudaBukhsh WR; Koeppl H; Rempała GA
    Bull Math Biol; 2019 May; 81(5):1303-1336. PubMed ID: 30756234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The slow-scale linear noise approximation: an accurate, reduced stochastic description of biochemical networks under timescale separation conditions.
    Thomas P; Straube AV; Grima R
    BMC Syst Biol; 2012 May; 6():39. PubMed ID: 22583770
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Are Quasi-Steady-State Approximated Models Suitable for Quantifying Intrinsic Noise Accurately?
    Sengupta D; Kar S
    PLoS One; 2015; 10(9):e0136668. PubMed ID: 26327626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stochastic chemical kinetics and the total quasi-steady-state assumption: application to the stochastic simulation algorithm and chemical master equation.
    Macnamara S; Bersani AM; Burrage K; Sidje RB
    J Chem Phys; 2008 Sep; 129(9):095105. PubMed ID: 19044893
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the Validity of the Stochastic Quasi-Steady-State Approximation in Open Enzyme Catalyzed Reactions: Timescale Separation or Singular Perturbation?
    Eilertsen J; Schnell S
    Bull Math Biol; 2021 Nov; 84(1):7. PubMed ID: 34825985
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stochastic quasi-steady state approximations for asymptotic solutions of the chemical master equation.
    Alarcón T
    J Chem Phys; 2014 May; 140(18):184109. PubMed ID: 24832255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An equation-free probabilistic steady-state approximation: dynamic application to the stochastic simulation of biochemical reaction networks.
    Salis H; Kaznessis YN
    J Chem Phys; 2005 Dec; 123(21):214106. PubMed ID: 16356038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hybrid deterministic/stochastic simulation of complex biochemical systems.
    Lecca P; Bagagiolo F; Scarpa M
    Mol Biosyst; 2017 Nov; 13(12):2672-2686. PubMed ID: 29058744
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Communication: limitations of the stochastic quasi-steady-state approximation in open biochemical reaction networks.
    Thomas P; Straube AV; Grima R
    J Chem Phys; 2011 Nov; 135(18):181103. PubMed ID: 22088045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A simple approximation of moments of the quasi-equilibrium distribution of an extended stochastic theta-logistic model with non-integer powers.
    Bhowmick AR; Bandyopadhyay S; Rana S; Bhattacharya S
    Math Biosci; 2016 Jan; 271():96-112. PubMed ID: 26561778
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing stochastic models from deterministic process equations by propensity adjustment.
    Wu J; Vidakovic B; Voit EO
    BMC Syst Biol; 2011 Nov; 5():187. PubMed ID: 22067083
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reduction of multiscale stochastic biochemical reaction networks using exact moment derivation.
    Kim JK; Sontag ED
    PLoS Comput Biol; 2017 Jun; 13(6):e1005571. PubMed ID: 28582397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of Deterministic and Stochastic Regime in a Model for Cdc42 Oscillations in Fission Yeast.
    Xu B; Kang HW; Jilkine A
    Bull Math Biol; 2019 May; 81(5):1268-1302. PubMed ID: 30756233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accuracy of the Michaelis-Menten approximation when analysing effects of molecular noise.
    Lawson MJ; Petzold L; Hellander A
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25833240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validity conditions for moment closure approximations in stochastic chemical kinetics.
    Schnoerr D; Sanguinetti G; Grima R
    J Chem Phys; 2014 Aug; 141(8):084103. PubMed ID: 25173001
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.