These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
278 related articles for article (PubMed ID: 26597281)
1. Breath-hold imaging of the coronary arteries using Quiescent-Interval Slice-Selective (QISS) magnetic resonance angiography: pilot study at 1.5 Tesla and 3 Tesla. Edelman RR; Giri S; Pursnani A; Botelho MP; Li W; Koktzoglou I J Cardiovasc Magn Reson; 2015 Nov; 17():101. PubMed ID: 26597281 [TBL] [Abstract][Full Text] [Related]
2. Nonenhanced MR angiography of the pulmonary arteries using single-shot radial quiescent-interval slice-selective (QISS): a technical feasibility study. Edelman RR; Silvers RI; Thakrar KH; Metzl MD; Nazari J; Giri S; Koktzoglou I J Cardiovasc Magn Reson; 2017 Jun; 19(1):48. PubMed ID: 28662717 [TBL] [Abstract][Full Text] [Related]
3. Clinical Value of Noncontrast-Enhanced Radial Quiescent-Interval Slice-Selective (QISS) Magnetic Resonance Angiography for the Diagnosis of Acute Pulmonary Embolism Compared to Contrast-Enhanced Computed Tomography and Cartesian Balanced Steady-State Free Precession. Salehi Ravesh M; Tesch K; Lebenatus A; Koktzoglou I; Edelman RR; Eden M; Langguth P; Graessner J; Jansen O; Both M J Magn Reson Imaging; 2020 Nov; 52(5):1510-1524. PubMed ID: 32537799 [TBL] [Abstract][Full Text] [Related]
4. Free-Breathing Fast Low-Angle Shot Quiescent-Interval Slice-Selective Magnetic Resonance Angiography for Improved Detection of Vascular Stenoses in the Pelvis and Abdomen: Technical Development. Varga-Szemes A; Aherne EA; Schoepf UJ; Todoran TM; Koktzoglou I; Edelman RR Invest Radiol; 2019 Dec; 54(12):752-756. PubMed ID: 31299678 [TBL] [Abstract][Full Text] [Related]
5. Cardiovascular cine imaging and flow evaluation using Fast Interrupted Steady-State (FISS) magnetic resonance. Edelman RR; Serhal A; Pursnani A; Pang J; Koktzoglou I J Cardiovasc Magn Reson; 2018 Feb; 20(1):12. PubMed ID: 29458384 [TBL] [Abstract][Full Text] [Related]
7. High-resolution, non-contrast-enhanced magnetic resonance angiography of the wrist, hand and digital arteries using optimized implementation of Cartesian quiescent interval slice selective (QISS) at 1.5 T. Salehi Ravesh M; Lebenatus A; Bonietzki A; Hensler J; Koktzoglou I; Edelman RR; Graessner J; Jansen O; Both M Magn Reson Imaging; 2021 May; 78():58-68. PubMed ID: 33582146 [TBL] [Abstract][Full Text] [Related]
8. Robust volume-targeted balanced steady-state free-precession coronary magnetic resonance angiography in a breathhold at 3.0 Tesla: a reproducibility study. Soleimanifard S; Stuber M; Hays AG; Weiss RG; Schär M J Cardiovasc Magn Reson; 2014 Apr; 16(1):27. PubMed ID: 24758168 [TBL] [Abstract][Full Text] [Related]
10. Single-Shot Coronary Quiescent-Interval Slice-Selective Magnetic Resonance Angiography Using Compressed Sensing: A Feasibility Study in Patients With Congenital Heart Disease. Shen D; Edelman RR; Robinson JD; Haji-Valizadeh H; Messina M; Giri S; Koktzoglou I; Rigsby CK; Kim D J Comput Assist Tomogr; 2018; 42(5):739-746. PubMed ID: 29958198 [TBL] [Abstract][Full Text] [Related]
11. Non-contrast MR angiography of pelvic arterial vasculature using the Quiescent interval slice selective (QISS) sequence. Ghibes P; Partovi S; Artzner C; Grözinger G; Wahl CM; Hagen F; Martirosian P Int J Cardiovasc Imaging; 2023 May; 39(5):1023-1030. PubMed ID: 36781568 [TBL] [Abstract][Full Text] [Related]
12. 3D self-gated cardiac cine imaging at 3 Tesla using stack-of-stars bSSFP with tiny golden angles and compressed sensing. Zhang X; Xie G; Lu N; Zhu Y; Wei Z; Su S; Shi C; Yan F; Liu X; Qiu B; Fan Z Magn Reson Med; 2019 May; 81(5):3234-3244. PubMed ID: 30474151 [TBL] [Abstract][Full Text] [Related]
14. Near-isotropic noncontrast MRA of the renal and peripheral arteries using a thin-slab stack-of-stars quiescent interval slice-selective acquisition. Edelman RR; Aherne E; Leloudas N; Pang J; Koktzoglou I Magn Reson Med; 2020 May; 83(5):1711-1720. PubMed ID: 31631387 [TBL] [Abstract][Full Text] [Related]
15. Comparison of fast multi-slice and standard segmented techniques for detection of late gadolinium enhancement in ischemic and non-ischemic cardiomyopathy - a prospective clinical cardiovascular magnetic resonance trial. Muehlberg F; Arnhold K; Fritschi S; Funk S; Prothmann M; Kermer J; Zange L; von Knobelsdorff-Brenkenhoff F; Schulz-Menger J J Cardiovasc Magn Reson; 2018 Feb; 20(1):13. PubMed ID: 29458430 [TBL] [Abstract][Full Text] [Related]
16. Improved high-resolution pediatric vascular cardiovascular magnetic resonance with gadofosveset-enhanced 3D respiratory navigated, inversion recovery prepared gradient echo readout imaging compared to 3D balanced steady-state free precession readout imaging. Tandon A; Hashemi S; Parks WJ; Kelleman MS; Sallee D; Slesnick TC J Cardiovasc Magn Reson; 2016 Nov; 18(1):74. PubMed ID: 27802802 [TBL] [Abstract][Full Text] [Related]
17. Dark blood cardiovascular magnetic resonance of the heart, great vessels, and lungs using electrocardiographic-gated three-dimensional unbalanced steady-state free precession. Edelman RR; Leloudas N; Pang J; Koktzoglou I J Cardiovasc Magn Reson; 2021 Nov; 23(1):127. PubMed ID: 34724939 [TBL] [Abstract][Full Text] [Related]
18. Optimization of single shot 3D breath-hold non-enhanced MR angiography of the renal arteries. Tan H; Koktzoglou I; Glielmi C; Galizia M; Edelman RR J Cardiovasc Magn Reson; 2012 May; 14(1):30. PubMed ID: 22607351 [TBL] [Abstract][Full Text] [Related]
19. Feasibility of a sub-3-minute imaging strategy for ungated quiescent interval slice-selective MRA of the extracranial carotid arteries using radial k-space sampling and deep learning-based image processing. Koktzoglou I; Huang R; Ong AL; Aouad PJ; Aherne EA; Edelman RR Magn Reson Med; 2020 Aug; 84(2):825-837. PubMed ID: 31975432 [TBL] [Abstract][Full Text] [Related]