BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 26597437)

  • 1. Effect of Channel Sidewalls on Joule Heating Induced Sample Dispersion in Rectangular Ducts.
    Dutta D
    Int J Heat Mass Transf; 2016 Feb; 93():529-537. PubMed ID: 26597437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroosmotic transport through rectangular channels with small zeta potentials.
    Dutta D
    J Colloid Interface Sci; 2007 Nov; 315(2):740-6. PubMed ID: 17761188
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrokinetic transport of charged samples through rectangular channels with small zeta potentials.
    Dutta D
    Anal Chem; 2008 Jun; 80(12):4723-30. PubMed ID: 18476719
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An analytic description of electrodynamic dispersion in free-flow zone electrophoresis.
    Dutta D
    J Chromatogr A; 2015 Jul; 1404():124-30. PubMed ID: 26044384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joule heating induced stream broadening in free-flow zone electrophoresis.
    Dutta D
    Electrophoresis; 2018 Mar; 39(5-6):760-769. PubMed ID: 29115696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A method-of-moments formulation for describing hydrodynamic dispersion of analyte streams in free-flow zone electrophoresis.
    Dutta D
    J Chromatogr A; 2014 May; 1340():134-8. PubMed ID: 24671038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analytical study of Joule heating effects on electrokinetic transportation in capillary electrophoresis.
    Xuan X; Li D
    J Chromatogr A; 2005 Feb; 1064(2):227-37. PubMed ID: 15739891
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Band-broadening in capillary zone electrophoresis with axial temperature gradients.
    Xuan X; Li D
    Electrophoresis; 2005 Jan; 26(1):166-75. PubMed ID: 15624181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of moderate Joule heating on electroosmotic flow velocity, retention, and efficiency in capillary electrochromatography.
    Chen G; Tallarek U; Seidel-Morgenstern A; Zhang Y
    J Chromatogr A; 2004 Jul; 1044(1-2):287-94. PubMed ID: 15354450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dispersion reduction in pressure-driven flow through microetched channels.
    Dutta D; Leighton DT
    Anal Chem; 2001 Feb; 73(3):504-13. PubMed ID: 11217754
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels.
    Tang G; Yan D; Yang C; Gong H; Chai JC; Lam YC
    Electrophoresis; 2006 Feb; 27(3):628-39. PubMed ID: 16456892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A model for Joule heating-induced dispersion in microchip electrophoresis.
    Wang Y; Lin Q; Mukherjee T
    Lab Chip; 2004 Dec; 4(6):625-31. PubMed ID: 15570376
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimating Stream Broadening in Free-Flow Electrophoretic Systems Based on the Method-of-Moments Formulation.
    Dutta D
    Methods Mol Biol; 2019; 1906():167-195. PubMed ID: 30488393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dispersion in large aspect ratio microchannels for open-channel liquid chromatography.
    Dutta D; Leighton DT
    Anal Chem; 2003 Jan; 75(1):57-70. PubMed ID: 12530819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Broadening of analyte streams due to a transverse pressure gradient in free-flow isoelectric focusing.
    Dutta D
    J Chromatogr A; 2017 Feb; 1484():85-92. PubMed ID: 28081900
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Numerical simulation of electroosmosis regulated peristaltic transport of Bingham nanofluid.
    Tanveer A; Khan M; Salahuddin T; Malik MY
    Comput Methods Programs Biomed; 2019 Oct; 180():105005. PubMed ID: 31421600
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A review of the zone broadening contributions in free-flow electrophoresis.
    Mahmud S; Ramproshad S; Deb R; Dutta D
    Electrophoresis; 2023 Oct; 44(19-20):1519-1538. PubMed ID: 37548630
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermally Fully Developed Electroosmotic Flow of Power-Law Nanofluid in a Rectangular Microchannel.
    Deng S
    Micromachines (Basel); 2019 May; 10(6):. PubMed ID: 31151264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coupled concentration polarization and electroosmotic circulation near micro/nanointerfaces: Taylor-Aris model of hydrodynamic dispersion and limits of its applicability.
    Yaroshchuk A; Zholkovskiy E; Pogodin S; Baulin V
    Langmuir; 2011 Sep; 27(18):11710-21. PubMed ID: 21812464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative analysis and synthesis of the electrokinetic mass transport and adsorption mechanisms of a charged adsorbate in capillary electrochromatography systems employing charged adsorbent particles.
    Grimes BA; Liapis AI
    J Chromatogr A; 2001 Jun; 919(1):157-79. PubMed ID: 11459302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.