BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 26597437)

  • 21. Rapid concentration of deoxyribonucleic acid via Joule heating induced temperature gradient focusing in poly-dimethylsiloxane microfluidic channel.
    Ge Z; Wang W; Yang C
    Anal Chim Acta; 2015 Feb; 858():91-7. PubMed ID: 25597807
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Joule heating induced transient temperature field and its effects on electroosmosis in a microcapillary packed with microspheres.
    Kang Y; Yang C; Huang X
    Langmuir; 2005 Aug; 21(16):7598-607. PubMed ID: 16042499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dispersion reduction in open-channel liquid electrochromatographic columns via pressure-driven back flow.
    Dutta D; Leighton DT
    Anal Chem; 2003 Jul; 75(14):3352-9. PubMed ID: 14570184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thermal and Flow Analysis of Fully Developed Electroosmotic Flow in Parallel-Plate Micro- and Nanochannels with Surface Charge-Dependent Slip.
    Chang L; Sun Y; Buren M; Jian Y
    Micromachines (Basel); 2022 Dec; 13(12):. PubMed ID: 36557465
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Joule heating effects on electroosmotic entry flow.
    Prabhakaran RA; Zhou Y; Patel S; Kale A; Song Y; Hu G; Xuan X
    Electrophoresis; 2017 Mar; 38(5):572-579. PubMed ID: 27557612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electroosmotic flow in channels with step changes in zeta potential and cross section.
    Brotherton CM; Davis RH
    J Colloid Interface Sci; 2004 Feb; 270(1):242-6. PubMed ID: 14693156
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transport of charged samples in fluidic channels with large zeta potentials.
    Dutta D
    Electrophoresis; 2007 Dec; 28(24):4552-60. PubMed ID: 18072222
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of ignored and well-known zone distortions on the separation performance of proteins in capillary free zone electrophoresis with special reference to analysis in polyacrylamide-coated fused silica capillaries in various buffers. I. Theoretical studies.
    Hjertén S; Mohabbati S; Westerlund D
    J Chromatogr A; 2004 Oct; 1053(1-2):181-99. PubMed ID: 15543984
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Joule heating and zeta potential effects on peristaltic blood flow through porous micro vessels altered by electrohydrodynamic.
    Ranjit NK; Shit GC; Tripathi D
    Microvasc Res; 2018 May; 117():74-89. PubMed ID: 29291432
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards high concentration enhancement of microfluidic temperature gradient focusing of sample solutes using combined AC and DC field induced Joule heating.
    Ge Z; Wang W; Yang C
    Lab Chip; 2011 Apr; 11(7):1396-402. PubMed ID: 21331425
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Estimation of Joule heating effect on temperature and pressure distribution in electrokinetic-driven microchannel flows.
    Chein R; Yang YC; Lin Y
    Electrophoresis; 2006 Feb; 27(3):640-9. PubMed ID: 16380954
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Numerical modeling of the Joule heating effect on electrokinetic flow focusing.
    Huang KD; Yang RJ
    Electrophoresis; 2006 May; 27(10):1957-66. PubMed ID: 16619299
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Application of an electrokinetic backflow for enhancing pressure-driven charge based separations in sub-micrometer deep channels.
    Xia L; Deb R; Yanagisawa N; Dutta D
    Anal Chim Acta; 2022 Nov; 1233():340476. PubMed ID: 36283775
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Joule heating effects on electroosmotic flow in insulator-based dielectrophoresis.
    Sridharan S; Zhu J; Hu G; Xuan X
    Electrophoresis; 2011 Sep; 32(17):2274-81. PubMed ID: 21792988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Irreversibility analysis in a slip aided electroosmotic flow through an asymmetrically heated microchannel: The effects of joule heating and the conjugate heat transfer.
    Gaikwad HS; Roy A; Mondal PK; Chimres N; Wongwises S
    Anal Chim Acta; 2019 Jan; 1045():85-97. PubMed ID: 30454576
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Impact of Taylor-Aris diffusivity on analyte and system zone dispersion in CZE assessed by computer simulation and experimental validation.
    Caslavska J; Mosher RA; Thormann W
    Electrophoresis; 2015 Jul; 36(14):1529-38. PubMed ID: 25820794
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Sample dispersion for segmented flow in microchannels with rectangular cross section.
    Kreutzer MT; Günther A; Jensen KF
    Anal Chem; 2008 Mar; 80(5):1558-67. PubMed ID: 18229943
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling and Analysis of the Electrokinetic Mass Transport and Adsorption Mechanisms of a Charged Adsorbate in Capillary Electrochromatography Systems Employing Charged Nonporous Adsorbent Particles.
    Grimes BA; Liapis AI
    J Colloid Interface Sci; 2001 Feb; 234(1):223-243. PubMed ID: 11161509
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electroosmotic flow and Joule heating in preparative continuous annular electrochromatography.
    Laskowski R; Bart HJ
    Electrophoresis; 2015 Sep; 36(17):2128-37. PubMed ID: 25997390
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.