These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

294 related articles for article (PubMed ID: 26597695)

  • 1. Defect chemistry and lithium transport in Li3OCl anti-perovskite superionic conductors.
    Lu Z; Chen C; Baiyee ZM; Chen X; Niu C; Ciucci F
    Phys Chem Chem Phys; 2015 Dec; 17(48):32547-55. PubMed ID: 26597695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Li ion diffusion behavior of Li
    Zhang Z; Ma Z; Pei Y
    Phys Chem Chem Phys; 2023 May; 25(19):13297-13307. PubMed ID: 37132220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superionic conductivity in lithium-rich anti-perovskites.
    Zhao Y; Daemen LL
    J Am Chem Soc; 2012 Sep; 134(36):15042-7. PubMed ID: 22849550
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ab Initio Simulations and Electronic Structure of Lithium-Doped Ionic Liquids: Structure, Transport, and Electrochemical Stability.
    Haskins JB; Bauschlicher CW; Lawson JW
    J Phys Chem B; 2015 Nov; 119(46):14705-19. PubMed ID: 26505208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Li+ ionic conductivities and diffusion mechanisms in Li-based imides and lithium amide.
    Li W; Wu G; Xiong Z; Feng YP; Chen P
    Phys Chem Chem Phys; 2012 Feb; 14(5):1596-606. PubMed ID: 22173712
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Lithium and Chlorine-Rich Preparation of Mechanochemically Activated Antiperovskite Composites for Solid-State Batteries.
    Yang Y; Han J; DeVita M; Lee SS; Kim JC
    Front Chem; 2020; 8():562549. PubMed ID: 33134271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Impacts of vacancy-induced polarization and distortion on diffusion in solid electrolyte Li
    Mehmedović Z; Wei V; Grieder A; Shea P; Wood BC; Adelstein N
    Philos Trans A Math Phys Eng Sci; 2021 Nov; 379(2211):20190459. PubMed ID: 34628948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stress-Mediated Enhancement of Ionic Conductivity in Fast-Ion Conductors.
    Sagotra AK; Cazorla C
    ACS Appl Mater Interfaces; 2017 Nov; 9(44):38773-38783. PubMed ID: 29035028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dependence of Ion Transport on the Electronegativity of the Constituting Atoms in Ionic Crystals.
    Zhang Q; Kaghazchi P
    Chemphyschem; 2017 Apr; 18(8):965-969. PubMed ID: 28191724
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stability, Elastic Properties, and the Li Transport Mechanism of the Protonated and Fluorinated Antiperovskite Lithium Conductors.
    Effat MB; Liu J; Lu Z; Wan TH; Curcio A; Ciucci F
    ACS Appl Mater Interfaces; 2020 Dec; 12(49):55011-55022. PubMed ID: 33242955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sluggish anion transport provides good kinetic stability to the anhydrous anti-perovskite solid electrolyte Li
    Serejo JAS; Pereira JS; Mouta R; Rego LGC
    Phys Chem Chem Phys; 2021 Mar; 23(11):6964-6973. PubMed ID: 33730138
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vacancy-Controlled Na
    Duchardt M; Ruschewitz U; Adams S; Dehnen S; Roling B
    Angew Chem Int Ed Engl; 2018 Jan; 57(5):1351-1355. PubMed ID: 29266642
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Superionic conduction in substoichiometric LiAl alloy: an ab initio study.
    Cucinotta CS; Miceli G; Raiteri P; Krack M; Kühne TD; Bernasconi M; Parrinello M
    Phys Rev Lett; 2009 Sep; 103(12):125901. PubMed ID: 19792446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Li-rich anti-perovskite Li3OCl films with enhanced ionic conductivity.
    Lü X; Wu G; Howard JW; Chen A; Zhao Y; Daemen LL; Jia Q
    Chem Commun (Camb); 2014 Oct; 50(78):11520-2. PubMed ID: 25132213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Superionic conductivity in the Li4C60 fulleride polymer.
    Riccò M; Belli M; Mazzani M; Pontiroli D; Quintavalle D; Jánossy A; Csányi G
    Phys Rev Lett; 2009 Apr; 102(14):145901. PubMed ID: 19392454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanistic Origin of Superionic Lithium Diffusion in Anion-Disordered Li
    Morgan BJ
    Chem Mater; 2021 Mar; 33(6):2004-2018. PubMed ID: 33840894
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ion transport mechanism in anhydrous lithium thiocyanate LiSCN Part I: ionic conductivity and defect chemistry.
    Joos M; Conrad M; Rad A; Kaghazchi P; Bette S; Merkle R; Dinnebier RE; Schleid T; Maier J
    Phys Chem Chem Phys; 2022 Aug; 24(34):20189-20197. PubMed ID: 35971978
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Argyrodite-type advanced lithium conductors and transport mechanisms beyond peddle-wheel effect.
    Fang H; Jena P
    Nat Commun; 2022 Apr; 13(1):2078. PubMed ID: 35440663
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New Family of Argyrodite Thioantimonate Lithium Superionic Conductors.
    Zhou L; Assoud A; Zhang Q; Wu X; Nazar LF
    J Am Chem Soc; 2019 Dec; 141(48):19002-19013. PubMed ID: 31642663
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Monkey Bar Mechanism of Superionic Li-ion Transport in LiTaCl
    Lei M; Li B; Liu H; Jiang DE
    Angew Chem Int Ed Engl; 2024 Mar; 63(12):e202315628. PubMed ID: 38079229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.