These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 26597959)
1. Improved production of melanin from Aspergillus fumigatus AFGRD105 by optimization of media factors. Raman NM; Shah PH; Mohan M; Ramasamy S AMB Express; 2015 Dec; 5(1):72. PubMed ID: 26597959 [TBL] [Abstract][Full Text] [Related]
2. Optimization of melanin production by Brevundimonas sp. SGJ using response surface methodology. Surwase SN; Jadhav SB; Phugare SS; Jadhav JP 3 Biotech; 2013 Jun; 3(3):187-194. PubMed ID: 28324367 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous Optimization of the Production of Organic Selenium and Cell Biomass in Zare H; Owlia P; Vahidi H; Hosseindokht Khujin M Iran J Pharm Res; 2018; 17(3):1081-1092. PubMed ID: 30127830 [TBL] [Abstract][Full Text] [Related]
4. Innovative use of Mucuna monosperma (Wight) callus cultures for continuous production of melanin by using statistically optimized biotransformation medium. Inamdar S; Joshi S; Bapat V; Jadhav J J Biotechnol; 2014 Jan; 170():28-34. PubMed ID: 24291190 [TBL] [Abstract][Full Text] [Related]
5. Production and Characterization of Melanin by Submerged Culture of Culinary and Medicinal Fungi Auricularia auricula. Zhang M; Xiao G; Thring RW; Chen W; Zhou H; Yang H Appl Biochem Biotechnol; 2015 May; 176(1):253-66. PubMed ID: 25800528 [TBL] [Abstract][Full Text] [Related]
6. Melanin biopolymers from newly isolated Pseudomonas koreensis strain UIS 19 with potential for cosmetics application, and optimization on molasses waste medium. Eskandari S; Etemadifar Z J Appl Microbiol; 2021 Sep; 131(3):1331-1343. PubMed ID: 33609007 [TBL] [Abstract][Full Text] [Related]
7. Production of natural edible melanin by Auricularia auricula and its physicochemical properties. Sun S; Zhang X; Chen W; Zhang L; Zhu H Food Chem; 2016 Apr; 196():486-92. PubMed ID: 26593518 [TBL] [Abstract][Full Text] [Related]
8. Laccase production optimization by response surface methodology with Aspergillus fumigatus AF1 in unique inexpensive medium and decolorization of different dyes with the crude enzyme or fungal pellets. Jin X; Ning Y J Hazard Mater; 2013 Nov; 262():870-7. PubMed ID: 24140539 [TBL] [Abstract][Full Text] [Related]
9. Optimization of melanin pigment production from the halotolerant black yeast Hortaea werneckii AS1 isolated from solar salter in Alexandria. Elsayis A; Hassan SWM; Ghanem KM; Khairy H BMC Microbiol; 2022 Apr; 22(1):92. PubMed ID: 35395716 [TBL] [Abstract][Full Text] [Related]
10. Citric acid production by a novel Aspergillus niger isolate: II. Optimization of process parameters through statistical experimental designs. Lotfy WA; Ghanem KM; El-Helow ER Bioresour Technol; 2007 Dec; 98(18):3470-7. PubMed ID: 17317159 [TBL] [Abstract][Full Text] [Related]
12. Optimization of β-glucosidase production by Aspergillus terreus strain EMOO 6-4 using response surface methodology under solid-state fermentation. El-Naggar Nel-A; Haroun SA; Owis EA; Sherief AA Prep Biochem Biotechnol; 2015 Aug; 45(6):568-87. PubMed ID: 25036937 [TBL] [Abstract][Full Text] [Related]
13. Application of a statistical design to the optimization of parameters and culture medium for alpha-amylase production by Aspergillus oryzae CBS 819.72 grown on gruel (wheat grinding by-product). Kammoun R; Naili B; Bejar S Bioresour Technol; 2008 Sep; 99(13):5602-9. PubMed ID: 18180155 [TBL] [Abstract][Full Text] [Related]
14. Optimization of methylene blue removal by stable emulsified liquid membrane using Plackett-Burman and Box-Behnken designs of experiments. Djenouhat M; Bendebane F; Bahloul L; Samar MEH; Ismail F R Soc Open Sci; 2018 Feb; 5(2):171220. PubMed ID: 29515841 [TBL] [Abstract][Full Text] [Related]
15. Application of the Response Surface Methodology to Optimize the Fermentation Parameters for Enhanced Docosahexaenoic Acid (DHA) Production by Wu K; Ding L; Zhu P; Li S; He S Molecules; 2018 Apr; 23(4):. PubMed ID: 29690557 [TBL] [Abstract][Full Text] [Related]
16. Optimization of lovastatin production from Mouafi FE; Ibrahim GS; Abo Elsoud MM J Genet Eng Biotechnol; 2016 Dec; 14(2):253-259. PubMed ID: 30647623 [TBL] [Abstract][Full Text] [Related]
17. Genetic validation and spectroscopic detailing of DHN-melanin extracted from an environmental fungus. Raman NM; Ramasamy S Biochem Biophys Rep; 2017 Dec; 12():98-107. PubMed ID: 28955797 [TBL] [Abstract][Full Text] [Related]
18. Mitogen-Activated Protein Kinase Cross-Talk Interaction Modulates the Production of Melanins in Aspergillus fumigatus. Manfiolli AO; Siqueira FS; Dos Reis TF; Van Dijck P; Schrevens S; Hoefgen S; Föge M; Straßburger M; de Assis LJ; Heinekamp T; Rocha MC; Janevska S; Brakhage AA; Malavazi I; Goldman GH; Valiante V mBio; 2019 Mar; 10(2):. PubMed ID: 30914505 [TBL] [Abstract][Full Text] [Related]
19. Anti-melanogenic activity of Myristica fragrans extract against Aspergillus fumigatus using phenotypic based screening. Hoda S; Vermani M; Joshi RK; Shankar J; Vijayaraghavan P BMC Complement Med Ther; 2020 Mar; 20(1):67. PubMed ID: 32122336 [TBL] [Abstract][Full Text] [Related]
20. [Optimization of one-step pelletization technology of Biqiu granules by Plackett-Burman design and Box-Behnken response surface methodology]. Zhang YJ; Liu LL; Hu JH; Wu Y; Chao EX; Xiao W Zhongguo Zhong Yao Za Zhi; 2015 Nov; 40(22):4406-10. PubMed ID: 27097415 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]