These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 26598155)

  • 1. Correlation Energy Expressions from the Adiabatic-Connection Fluctuation-Dissipation Theorem Approach.
    Ángyán JG; Liu RF; Toulouse J; Jansen G
    J Chem Theory Comput; 2011 Oct; 7(10):3116-30. PubMed ID: 26598155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the equivalence of ring-coupled cluster and adiabatic connection fluctuation-dissipation theorem random phase approximation correlation energy expressions.
    Jansen G; Liu RF; Angyán JG
    J Chem Phys; 2010 Oct; 133(15):154106. PubMed ID: 20969369
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectric Matrix Formulation of Correlation Energies in the Random Phase Approximation: Inclusion of Exchange Effects.
    Mussard B; Rocca D; Jansen G; Ángyán JG
    J Chem Theory Comput; 2016 May; 12(5):2191-202. PubMed ID: 26986444
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-consistent Kohn-Sham method based on the adiabatic-connection fluctuation-dissipation theorem and the exact-exchange kernel.
    Bleiziffer P; Krug M; Görling A
    J Chem Phys; 2015 Jun; 142(24):244108. PubMed ID: 26133411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Efficient self-consistent treatment of electron correlation within the random phase approximation.
    Bleiziffer P; Heßelmann A; Görling A
    J Chem Phys; 2013 Aug; 139(8):084113. PubMed ID: 24006980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of model exchange-correlation kernels in the adiabatic connection fluctuation-dissipation theorem for inhomogeneous systems.
    Lu D
    J Chem Phys; 2014 May; 140(18):18A520. PubMed ID: 24832328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interatomic methods for the dispersion energy derived from the adiabatic connection fluctuation-dissipation theorem.
    Tkatchenko A; Ambrosetti A; DiStasio RA
    J Chem Phys; 2013 Feb; 138(7):074106. PubMed ID: 23444996
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of the Second-Order Statically Screened Exchange Correction to the Random Phase Approximation for Correlation Energies.
    Förster A
    J Chem Theory Comput; 2022 Oct; 18(10):5948-5965. PubMed ID: 36150190
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adiabatic-connection fluctuation-dissipation density-functional theory based on range separation.
    Toulouse J; Gerber IC; Jansen G; Savin A; Angyán JG
    Phys Rev Lett; 2009 Mar; 102(9):096404. PubMed ID: 19392541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Random phase approximation with second-order screened exchange for current-carrying atomic states.
    Zhu W; Zhang L; Trickey SB
    J Chem Phys; 2016 Dec; 145(22):224106. PubMed ID: 27984916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous Attenuation of Both Self-Interaction Error and Nondynamic Correlation Error in Density Functional Theory: A Spin-Pair Distinctive Adiabatic-Connection Approximation.
    Zhang IY; Xu X
    J Phys Chem Lett; 2019 May; 10(10):2617-2623. PubMed ID: 31046289
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical First-Order Molecular Properties and Forces within the Adiabatic Connection Random Phase Approximation.
    Burow AM; Bates JE; Furche F; Eshuis H
    J Chem Theory Comput; 2014 Jan; 10(1):180-94. PubMed ID: 26579901
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exchange-correlation energy from pairing matrix fluctuation and the particle-particle random phase approximation.
    van Aggelen H; Yang Y; Yang W
    J Chem Phys; 2014 May; 140(18):18A511. PubMed ID: 24832319
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lieb-Oxford bound and pair correlation functions for density-functional methods based on the adiabatic-connection fluctuation-dissipation theorem.
    Erhard J; Fauser S; Kalaß S; Moerman E; Trushin E; Görling A
    Faraday Discuss; 2020 Dec; 224(0):79-97. PubMed ID: 32935700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Benchmark tests and spin adaptation for the particle-particle random phase approximation.
    Yang Y; van Aggelen H; Steinmann SN; Peng D; Yang W
    J Chem Phys; 2013 Nov; 139(17):174110. PubMed ID: 24206290
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electron affinities and ionisation potentials for atoms via "benchmark" tdDFT calculations with and without exchange kernels.
    Gould T; Dobson JF
    J Chem Phys; 2013 Jan; 138(1):014109. PubMed ID: 23298030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adiabatic-connection fluctuation-dissipation DFT for the structural properties of solids-The renormalized ALDA and electron gas kernels.
    Patrick CE; Thygesen KS
    J Chem Phys; 2015 Sep; 143(10):102802. PubMed ID: 26373995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluctuation-dissipation theorem density-functional theory.
    Furche F; Van Voorhis T
    J Chem Phys; 2005 Apr; 122(16):164106. PubMed ID: 15945671
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cubic-scaling algorithm and self-consistent field for the random-phase approximation with second-order screened exchange.
    Moussa JE
    J Chem Phys; 2014 Jan; 140(1):014107. PubMed ID: 24410221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Staggered Mesh Method for Correlation Energy Calculations of Solids: Random Phase Approximation in Direct Ring Coupled Cluster Doubles and Adiabatic Connection Formalisms.
    Xing X; Lin L
    J Chem Theory Comput; 2022 Feb; 18(2):763-775. PubMed ID: 34989566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.