These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Periodic Arrays of Phosphorene Nanopores as Antidot Lattices with Tunable Properties. Cupo A; Masih Das P; Chien CC; Danda G; Kharche N; Tristant D; Drndić M; Meunier V ACS Nano; 2017 Jul; 11(7):7494-7507. PubMed ID: 28666086 [TBL] [Abstract][Full Text] [Related]
3. Interlayer coupling enhancement in graphene/hexagonal boron nitride heterostructures by intercalated defects or vacancies. Park S; Park C; Kim G J Chem Phys; 2014 Apr; 140(13):134706. PubMed ID: 24712807 [TBL] [Abstract][Full Text] [Related]
4. Ballistic miniband conduction in a graphene superlattice. Lee M; Wallbank JR; Gallagher P; Watanabe K; Taniguchi T; Fal'ko VI; Goldhaber-Gordon D Science; 2016 Sep; 353(6307):1526-1529. PubMed ID: 27708100 [TBL] [Abstract][Full Text] [Related]
6. Electronic transport of encapsulated graphene and WSe2 devices fabricated by pick-up of prepatterned hBN. Wang JI; Yang Y; Chen YA; Watanabe K; Taniguchi T; Churchill HO; Jarillo-Herrero P Nano Lett; 2015 Mar; 15(3):1898-903. PubMed ID: 25654184 [TBL] [Abstract][Full Text] [Related]
7. Effects of A Magnetic Field on the Transport and Noise Properties of a Graphene Ribbon with Antidots. Marconcini P; Macucci M Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33113892 [TBL] [Abstract][Full Text] [Related]
8. Dots versus antidots: computational exploration of structure, magnetism, and half-metallicity in boron-nitride nanostructures. Du A; Chen Y; Zhu Z; Amal R; Lu GQ; Smith SC J Am Chem Soc; 2009 Dec; 131(47):17354-9. PubMed ID: 19929022 [TBL] [Abstract][Full Text] [Related]
10. Atomically precise vacancy-assembled quantum antidots. Fang H; Mahalingam H; Li X; Han X; Qiu Z; Han Y; Noori K; Dulal D; Chen H; Lyu P; Yang T; Li J; Su C; Chen W; Cai Y; Neto AHC; Novoselov KS; Rodin A; Lu J Nat Nanotechnol; 2023 Dec; 18(12):1401-1408. PubMed ID: 37653051 [TBL] [Abstract][Full Text] [Related]
11. Robustness of topologically protected transport in graphene-boron nitride lateral heterostructures. Abergel DS J Phys Condens Matter; 2017 Feb; 29(7):075303. PubMed ID: 28032604 [TBL] [Abstract][Full Text] [Related]
12. Band structures and transport properties of zigzag graphene nanoribbons with antidot arrays. Zhang YT; Li QM; Li YC; Zhang YY; Zhai F J Phys Condens Matter; 2010 Aug; 22(31):315304. PubMed ID: 21399360 [TBL] [Abstract][Full Text] [Related]
14. Dirac model of electronic transport in graphene antidot barriers. Thomsen MR; Brun SJ; Pedersen TG J Phys Condens Matter; 2014 Aug; 26(33):335301. PubMed ID: 25071080 [TBL] [Abstract][Full Text] [Related]
15. Spatially resolved one-dimensional boundary states in graphene-hexagonal boron nitride planar heterostructures. Park J; Lee J; Liu L; Clark KW; Durand C; Park C; Sumpter BG; Baddorf AP; Mohsin A; Yoon M; Gu G; Li AP Nat Commun; 2014 Nov; 5():5403. PubMed ID: 25377633 [TBL] [Abstract][Full Text] [Related]
16. Influence of Hexagonal Boron Nitride on Electronic Structure of Graphene. Liu J; Luo C; Lu H; Huang Z; Long G; Peng X Molecules; 2022 Jun; 27(12):. PubMed ID: 35744866 [TBL] [Abstract][Full Text] [Related]
17. Electrical and Thermal Transport in Coplanar Polycrystalline Graphene-hBN Heterostructures. Barrios-Vargas JE; Mortazavi B; Cummings AW; Martinez-Gordillo R; Pruneda M; Colombo L; Rabczuk T; Roche S Nano Lett; 2017 Mar; 17(3):1660-1664. PubMed ID: 28195494 [TBL] [Abstract][Full Text] [Related]