These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 26598267)

  • 1. Insights into the Solvation and Mobility of the Hydroxyl Radical in Aqueous Solution.
    Codorniu-Hernández E; Kusalik PG
    J Chem Theory Comput; 2011 Nov; 7(11):3725-32. PubMed ID: 26598267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mobility mechanism of hydroxyl radicals in aqueous solution via hydrogen transfer.
    Codorniu-Hernández E; Kusalik PG
    J Am Chem Soc; 2012 Jan; 134(1):532-8. PubMed ID: 22107057
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydroxyl radicals in ice: insights into local structure and dynamics.
    Codorniu-Hernández E; Kusalik PG
    Phys Chem Chem Phys; 2012 Sep; 14(33):11639-50. PubMed ID: 22825125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solvation structure of hydroxyl radical by Car-Parrinello molecular dynamics.
    Khalack JM; Lyubartsev AP
    J Phys Chem A; 2005 Jan; 109(2):378-86. PubMed ID: 16833356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-resolved study on the reactions of organic selenides with hydroxyl and oxide radicals, hydrated electrons, and H-atoms in aqueous solution, and DFT calculations of transients in comparison with sulfur analogues.
    Tobien T; Bonifacić M; Naumov S; Asmus KD
    Phys Chem Chem Phys; 2010 Jul; 12(25):6750-8. PubMed ID: 20431832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of O((3)P) formation from a hydroxyl radical pair in aqueous solution.
    Codorniu-Hernández E; Hall KW; Boese AD; Ziemianowicz D; Carpendale S; Kusalik PG
    J Chem Theory Comput; 2015 Oct; 11(10):4740-8. PubMed ID: 26574263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mobility and solvation structure of a hydroxyl radical in a water nanodroplet: a Born-Oppenheimer molecular dynamics study.
    Hadizadeh MH; Yang L; Fang G; Qiu Z; Li Z
    Phys Chem Chem Phys; 2021 Jul; 23(27):14628-14635. PubMed ID: 34196637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ab initio molecular-dynamics simulation of aqueous proton solvation and transport revisited.
    Izvekov S; Voth GA
    J Chem Phys; 2005 Jul; 123(4):044505. PubMed ID: 16095367
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions.
    Park S; Odelius M; Gaffney KJ
    J Phys Chem B; 2009 Jun; 113(22):7825-35. PubMed ID: 19435307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multistate empirical valence bond model for solvation and transport simulations of OH- in aqueous solutions.
    Ufimtsev IS; Kalinichev AG; Martinez TJ; Kirkpatrick RJ
    Phys Chem Chem Phys; 2009 Nov; 11(41):9420-30. PubMed ID: 19830325
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hidden Hemibonding in the Aqueous Hydroxyl Radical.
    Rana B; Herbert JM
    J Phys Chem Lett; 2021 Aug; 12(33):8053-8060. PubMed ID: 34406021
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydroxyl radical and hydroxide ion in liquid water: a comparative electron density functional theory study.
    Vassilev P; Louwerse MJ; Baerends EJ
    J Phys Chem B; 2005 Dec; 109(49):23605-10. PubMed ID: 16375337
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous solvation of Hg(OH)2: energetic and dynamical density functional theory studies of the Hg(OH)2-(H2O)n (n = 1-24) structures.
    Amaro-Estrada JI; Maron L; Ramírez-Solís A
    J Phys Chem A; 2013 Sep; 117(37):9069-75. PubMed ID: 23968503
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ab Initio Molecular Dynamics Simulations of an Excess Proton in a Triethylene Glycol-Water Solution: Solvation Structure, Mechanism, and Kinetics.
    McDonnell MT; Xu H; Keffer DJ
    J Phys Chem B; 2016 Jun; 120(23):5223-42. PubMed ID: 27218455
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimethylselenide as a probe for reactions of halogenated alkoxyl radicals in aqueous solution. Degradation of dichloro- and dibromomethane.
    Makogon O; Flyunt R; Tobien T; Naumov S; Bonifacić M
    J Phys Chem A; 2008 Jul; 112(26):5908-16. PubMed ID: 18540662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Proton transfer reactions and dynamics in CH(3)OH-H(3)O(+)-H(2)O complexes.
    Sagarik K; Chaiwongwattana S; Vchirawongkwin V; Prueksaaroon S
    Phys Chem Chem Phys; 2010 Jan; 12(4):918-29. PubMed ID: 20066377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular dynamics study of the hydration of the hydroxyl radical at body temperature.
    Pabis A; Szala-Bilnik J; Swiatla-Wojcik D
    Phys Chem Chem Phys; 2011 May; 13(20):9458-68. PubMed ID: 21483962
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Car-Parrinello Molecular Dynamics Simulations of CaCl2 Aqueous Solutions.
    Todorova T; Hünenberger PH; Hutter J
    J Chem Theory Comput; 2008 May; 4(5):779-89. PubMed ID: 26621092
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution.
    Tuckerman ME; Marx D; Parrinello M
    Nature; 2002 Jun; 417(6892):925-9. PubMed ID: 12087398
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial hydration structures and dynamics of phenol in sub- and supercritical water.
    Plugatyr A; Nahtigal I; Svishchev IM
    J Chem Phys; 2006 Jan; 124(2):024507. PubMed ID: 16422611
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.