These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 26598358)

  • 1. Micellization Studied by GPU-Accelerated Coarse-Grained Molecular Dynamics.
    Levine BG; LeBard DN; DeVane R; Shinoda W; Kohlmeyer A; Klein ML
    J Chem Theory Comput; 2011 Dec; 7(12):4135-45. PubMed ID: 26598358
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micellization behavior of coarse grained surfactant models.
    Sanders SA; Panagiotopoulos AZ
    J Chem Phys; 2010 Mar; 132(11):114902. PubMed ID: 20331315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantifying the hydrophobic effect. 2. A computer simulation-molecular-thermodynamic model for the micellization of nonionic surfactants in aqueous solution.
    Stephenson BC; Goldsipe A; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1045-62. PubMed ID: 17266258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complementary use of simulations and molecular-thermodynamic theory to model micellization.
    Stephenson BC; Beers K; Blankschtein D
    Langmuir; 2006 Feb; 22(4):1500-13. PubMed ID: 16460068
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulation and thermodynamic modeling of the self-assembly of the triterpenoids asiatic acid and madecassic acid in aqueous solution.
    Stephenson BC; Goldsipe A; Blankschtein D
    J Phys Chem B; 2008 Feb; 112(8):2357-71. PubMed ID: 18247591
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coarse-grained molecular dynamics simulation of self-assembly and surface adsorption of ionic surfactants using an implicit water model.
    Wang S; Larson RG
    Langmuir; 2015 Feb; 31(4):1262-71. PubMed ID: 25565113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of self-assemblies of sodium dodecyl sulfate and fragrance additives using coarse-grained force fields.
    Yang C; Shen Z; Wu L; Tang H; Zhao L; Cao F; Sun H
    J Mol Model; 2017 Jul; 23(7):211. PubMed ID: 28643001
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Algorithms of GPU-enabled reactive force field (ReaxFF) molecular dynamics.
    Zheng M; Li X; Guo L
    J Mol Graph Model; 2013 Apr; 41():1-11. PubMed ID: 23454611
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coarse-grained molecular dynamics simulation of the interface behaviour and self-assembly of CTAB cationic surfactants.
    Illa-Tuset S; Malaspina DC; Faraudo J
    Phys Chem Chem Phys; 2018 Nov; 20(41):26422-26430. PubMed ID: 30306164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coarse-grained molecular dynamics simulations of the sphere to rod transition in surfactant micelles.
    Sangwai AV; Sureshkumar R
    Langmuir; 2011 Jun; 27(11):6628-38. PubMed ID: 21524093
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coarse-grained potential models for phenyl-based molecules: II. Application to fullerenes.
    Chiu CC; DeVane R; Klein ML; Shinoda W; Moore PB; Nielsen SO
    J Phys Chem B; 2010 May; 114(19):6394-400. PubMed ID: 20426450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction of the Critical Micelle Concentration of Nonionic Surfactants by Dissipative Particle Dynamics Simulations.
    Vishnyakov A; Lee MT; Neimark AV
    J Phys Chem Lett; 2013 Mar; 4(5):797-802. PubMed ID: 26281935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Potentials of mean force and escape times of surfactants from micelles and hydrophobic surfaces using molecular dynamics simulations.
    Yuan F; Wang S; Larson RG
    Langmuir; 2015 Feb; 31(4):1336-43. PubMed ID: 25560633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling self-assembly of silica/surfactant mesostructures in the templated synthesis of nanoporous solids.
    Pérez-Sánchez G; Gomes JR; Jorge M
    Langmuir; 2013 Feb; 29(7):2387-96. PubMed ID: 23343439
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly Scalable and Memory Efficient Ultra-Coarse-Grained Molecular Dynamics Simulations.
    Grime JM; Voth GA
    J Chem Theory Comput; 2014 Jan; 10(1):423-31. PubMed ID: 26579921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation of Coarse-Grained Protein-Protein Interactions with Graphics Processing Units.
    Tunbridge I; Best RB; Gain J; Kuttel MM
    J Chem Theory Comput; 2010 Nov; 6(11):3588-600. PubMed ID: 26617104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sphere-to-rod transitions of nonionic surfactant micelles in aqueous solution modeled by molecular dynamics simulations.
    Velinova M; Sengupta D; Tadjer AV; Marrink SJ
    Langmuir; 2011 Dec; 27(23):14071-7. PubMed ID: 21981373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transferable coarse-grained model for perfluorosulfonic acid polymer membranes.
    Kuo AT; Okazaki S; Shinoda W
    J Chem Phys; 2017 Sep; 147(9):094904. PubMed ID: 28886657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantifying the hydrophobic effect. 3. A computer simulation-molecular-thermodynamic model for the micellization of ionic and zwitterionic surfactants in aqueous solution.
    Stephenson BC; Beers KJ; Blankschtein D
    J Phys Chem B; 2007 Feb; 111(5):1063-75. PubMed ID: 17266259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. From homogeneous dispersion to micelles-a molecular dynamics simulation on the compromise of the hydrophilic and hydrophobic effects of sodium dodecyl sulfate in aqueous solution.
    Gao J; Ge W; Hu G; Li J
    Langmuir; 2005 May; 21(11):5223-9. PubMed ID: 15896075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.