These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 26598520)

  • 1. The Physiological Characterization of Connexin41.8 and Connexin39.4, Which Are Involved in the Striped Pattern Formation of Zebrafish.
    Watanabe M; Sawada R; Aramaki T; Skerrett IM; Kondo S
    J Biol Chem; 2016 Jan; 291(3):1053-63. PubMed ID: 26598520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The minimal gap-junction network among melanophores and xanthophores required for stripe pattern formation in zebrafish.
    Usui Y; Aramaki T; Kondo S; Watanabe M
    Development; 2019 Nov; 146(22):. PubMed ID: 31666235
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the Connexin C-terminus in skin pattern formation of Zebrafish.
    Usui Y; Watanabe M
    BBA Adv; 2021; 1():100006. PubMed ID: 37082017
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fish-specific N-terminal domain sequence in Connexin 39.4 plays an important role in zebrafish stripe formation by regulating the opening and closing of gap junctions and hemichannels.
    Watanabe M
    Biochim Biophys Acta Gen Subj; 2023 May; 1867(5):130342. PubMed ID: 36889448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gap junctions composed of connexins 41.8 and 39.4 are essential for colour pattern formation in zebrafish.
    Irion U; Frohnhöfer HG; Krauss J; Çolak Champollion T; Maischein HM; Geiger-Rudolph S; Weiler C; Nüsslein-Volhard C
    Elife; 2014 Dec; 3():e05125. PubMed ID: 25535837
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spot pattern of leopard Danio is caused by mutation in the zebrafish connexin41.8 gene.
    Watanabe M; Iwashita M; Ishii M; Kurachi Y; Kawakami A; Kondo S; Okada N
    EMBO Rep; 2006 Sep; 7(9):893-7. PubMed ID: 16845369
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polyamine sensitivity of gap junctions is required for skin pattern formation in zebrafish.
    Watanabe M; Watanabe D; Kondo S
    Sci Rep; 2012; 2():473. PubMed ID: 22737406
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular and functional diversity of neural connexins in the retina.
    Dermietzel R; Kremer M; Paputsoglu G; Stang A; Skerrett IM; Gomes D; Srinivas M; Janssen-Bienhold U; Weiler R; Nicholson BJ; Bruzzone R; Spray DC
    J Neurosci; 2000 Nov; 20(22):8331-43. PubMed ID: 11069940
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changing clothes easily: connexin41.8 regulates skin pattern variation.
    Watanabe M; Kondo S
    Pigment Cell Melanoma Res; 2012 May; 25(3):326-30. PubMed ID: 22313791
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular cloning and functional expression of zfCx52.6: a novel connexin with hemichannel-forming properties expressed in horizontal cells of the zebrafish retina.
    Zoidl G; Bruzzone R; Weickert S; Kremer M; Zoidl C; Mitropoulou G; Srinivas M; Spray DC; Dermietzel R
    J Biol Chem; 2004 Jan; 279(4):2913-21. PubMed ID: 14583621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of two cataract-associated mutations located in the NH2 terminus of connexin 46.
    Tong JJ; Sohn BC; Lam A; Walters DE; Vertel BM; Ebihara L
    Am J Physiol Cell Physiol; 2013 May; 304(9):C823-32. PubMed ID: 23302783
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The cataract related mutation N188T in human connexin46 (hCx46) revealed a critical role for residue N188 in the docking process of gap junction channels.
    Schadzek P; Schlingmann B; Schaarschmidt F; Lindner J; Koval M; Heisterkamp A; Preller M; Ngezahayo A
    Biochim Biophys Acta; 2016 Jan; 1858(1):57-66. PubMed ID: 26449341
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological and molecular characterization of connexin hemichannels in zebrafish retinal horizontal cells.
    Sun Z; Risner ML; van Asselt JB; Zhang DQ; Kamermans M; McMahon DG
    J Neurophysiol; 2012 May; 107(10):2624-32. PubMed ID: 22357795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutation of a conserved threonine in the third transmembrane helix of alpha- and beta-connexins creates a dominant-negative closed gap junction channel.
    Beahm DL; Oshima A; Gaietta GM; Hand GM; Smock AE; Zucker SN; Toloue MM; Chandrasekhar A; Nicholson BJ; Sosinsky GE
    J Biol Chem; 2006 Mar; 281(12):7994-8009. PubMed ID: 16407179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional alterations in gap junction channels formed by mutant forms of connexin 32: evidence for loss of function as a pathogenic mechanism in the X-linked form of Charcot-Marie-Tooth disease.
    Abrams CK; Freidin MM; Verselis VK; Bennett MV; Bargiello TA
    Brain Res; 2001 May; 900(1):9-25. PubMed ID: 11325342
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zebrafish cx30.3: identification and characterization of a gap junction gene highly expressed in the skin.
    Tao L; DeRosa AM; White TW; Valdimarsson G
    Dev Dyn; 2010 Oct; 239(10):2627-36. PubMed ID: 20737512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning, tissue distribution, and hormonal control in the ovary of Cx41 mRNA, a novel Xenopus connexin gene transcript.
    Yoshizaki G; Patiño R
    Mol Reprod Dev; 1995 Sep; 42(1):7-18. PubMed ID: 8562053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging issues of connexin channels: biophysics fills the gap.
    Harris AL
    Q Rev Biophys; 2001 Aug; 34(3):325-472. PubMed ID: 11838236
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Different consequences of cataract-associated mutations at adjacent positions in the first extracellular boundary of connexin50.
    Tong JJ; Minogue PJ; Guo W; Chen TL; Beyer EC; Berthoud VM; Ebihara L
    Am J Physiol Cell Physiol; 2011 May; 300(5):C1055-64. PubMed ID: 21228318
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of trafficking, stability and function of human connexin 26 gap junction channels with deafness-causing mutations in the fourth transmembrane helix.
    Ambrosi C; Walker AE; Depriest AD; Cone AC; Lu C; Badger J; Skerrett IM; Sosinsky GE
    PLoS One; 2013; 8(8):e70916. PubMed ID: 23967136
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.