These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 26598664)

  • 1. Weaker axially dipolar time-averaged paleomagnetic field based on multidomain-corrected paleointensities from Galapagos lavas.
    Wang H; Kent DV; Rochette P
    Proc Natl Acad Sci U S A; 2015 Dec; 112(49):15036-41. PubMed ID: 26598664
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic paleointensity bias and the long-term history of the geodynamo.
    Smirnov AV; Kulakov EV; Foucher MS; Bristol KE
    Sci Adv; 2017 Feb; 3(2):e1602306. PubMed ID: 28246644
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High geomagnetic intensity during the mid-Cretaceous from Thellier analyses of single plagioclase crystals.
    Tarduno JA; Cottrell RD; Smirnov AV
    Science; 2001 Mar; 291(5509):1779-83. PubMed ID: 11230692
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intensity of the Earth's magnetic field: Evidence for a Mid-Paleozoic dipole low.
    Hawkins LMA; Grappone JM; Sprain CJ; Saengduean P; Sage EJ; Thomas-Cunningham S; Kugabalan B; Biggin AJ
    Proc Natl Acad Sci U S A; 2021 Aug; 118(34):. PubMed ID: 34404726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Palaeomagnetism of the Upper Miocene- Lower Pliocene lavas from the East Carpathians: contribution to the paleosecular variation of geomagnetic field.
    Vişan M; Panaiotu CG; Necula C; Dumitru A
    Sci Rep; 2016 Mar; 6():23411. PubMed ID: 26997549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Cretaceous superchron geodynamo: observations near the tangent cylinder.
    Tarduno JA; Cottrell RD; Smirnov AV
    Proc Natl Acad Sci U S A; 2002 Oct; 99(22):14020-5. PubMed ID: 12388778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bulk magnetic domain stability controls paleointensity fidelity.
    Paterson GA; Muxworthy AR; Yamamoto Y; Pan Y
    Proc Natl Acad Sci U S A; 2017 Dec; 114(50):13120-13125. PubMed ID: 29187534
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High geomagnetic field intensity recorded by anorthosite xenoliths requires a strongly powered late Mesoproterozoic geodynamo.
    Zhang Y; Swanson-Hysell NL; Avery MS; Fu RR
    Proc Natl Acad Sci U S A; 2022 Jul; 119(29):e2202875119. PubMed ID: 35858328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geomagnetic dipole strength and reversal rate over the past two million years.
    Valet JP; Meynadier L; Guyodo Y
    Nature; 2005 Jun; 435(7043):802-5. PubMed ID: 15944701
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The paleomagnetic field from equatorial deep-sea sediments: axial symmetry and polarity asymmetry.
    Schneider DA; Kent DV
    Science; 1988 Oct; 242(4876):252-6. PubMed ID: 17787653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic source separation in Earth's outer core.
    Hoffman KA; Singer BS
    Science; 2008 Sep; 321(5897):1800. PubMed ID: 18818352
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paleomagnetic record of a geomagnetic field reversal from late miocene mafic intrusions, southern nevada.
    Ratcliff CD; Geissman JW; Perry FV; Crowe BM; Zeitler PK
    Science; 1994 Oct; 266(5184):412-6. PubMed ID: 17816684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Archaeomagnetism in the Levant and Mesopotamia Reveals the Largest Changes in the Geomagnetic Field.
    Shaar R; Gallet Y; Vaknin Y; Gonen L; Martin MAS; Adams MJ; Finkelstein I
    J Geophys Res Solid Earth; 2022 Dec; 127(12):e2022JB024962. PubMed ID: 37033112
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Paleomagnetism indicates that primary magnetite in zircon records a strong Hadean geodynamo.
    Tarduno JA; Cottrell RD; Bono RK; Oda H; Davis WJ; Fayek M; Erve OV'; Nimmo F; Huang W; Thern ER; Fearn S; Mitra G; Smirnov AV; Blackman EG
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2309-2318. PubMed ID: 31964848
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in earth's dipole.
    Olson P; Amit H
    Naturwissenschaften; 2006 Nov; 93(11):519-42. PubMed ID: 16915369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intermediate field directions recorded in Pliocene basalts in Styria (Austria): evidence for cryptochron C2r.2r-1.
    Schnepp E; Arneitz P; Ganerød M; Scholger R; Fritz I; Egli R; Leonhardt R
    Earth Planets Space; 2021; 73(1):182. PubMed ID: 34720650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Instability of thermoremanence and the problem of estimating the ancient geomagnetic field strength from non-single-domain recorders.
    Shaar R; Tauxe L
    Proc Natl Acad Sci U S A; 2015 Sep; 112(36):11187-92. PubMed ID: 26305946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deciphering records of geomagnetic reversals.
    Valet JP; Fournier A
    Rev Geophys; 2016 Jun; 54(2):410-446. PubMed ID: 31423490
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Latest pleistocene and holocene geomagnetic paleointensity on hawaii.
    Mankinen EA; Champion DE
    Science; 1993 Oct; 262(5132):412-6. PubMed ID: 17789950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Earth's magnetic field in Jerusalem during the Babylonian destruction: A unique reference for field behavior and an anchor for archaeomagnetic dating.
    Vaknin Y; Shaar R; Gadot Y; Shalev Y; Lipschits O; Ben-Yosef E
    PLoS One; 2020; 15(8):e0237029. PubMed ID: 32764793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.