These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 2659881)

  • 1. Energy deficiency, calcium overload or oxidative stress: possible causes of irreversible ischemic myocardial injury.
    Piper HM
    Klin Wochenschr; 1989 May; 67(9):465-76. PubMed ID: 2659881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxygen free radicals and excitation-contraction coupling.
    Goldhaber JI; Qayyum MS
    Antioxid Redox Signal; 2000; 2(1):55-64. PubMed ID: 11232601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular oxygen: friend and foe. The role of the oxygen free radical system in the calcium paradox, the oxygen paradox and ischemia/reperfusion injury.
    Hess ML; Manson NH
    J Mol Cell Cardiol; 1984 Nov; 16(11):969-85. PubMed ID: 6394765
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Hibernation, stunning, ischemic preconditioning--new paradigms in coronary disease?].
    Heusch G
    Z Kardiol; 1992 Nov; 81(11):596-609. PubMed ID: 1471397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Halothane protects cardiomyocytes against reoxygenation-induced hypercontracture.
    Siegmund B; Schlack W; Ladilov YV; Balser C; Piper HM
    Circulation; 1997 Dec; 96(12):4372-9. PubMed ID: 9416906
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calcium and the oxygen paradox.
    Siegmund B; Schlüter KD; Piper HM
    Cardiovasc Res; 1993 Oct; 27(10):1778-83. PubMed ID: 8275523
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Irreversible ischemic myocardial damage. Physiopathologic aspects of ischemia and myocardial revascularization].
    Myrmel T
    Tidsskr Nor Laegeforen; 1990 May; 110(13):1707-10. PubMed ID: 2195705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of calcium in ischemic myocardial injury.
    Murphy JG; Marsh JD; Smith TW
    Circulation; 1987 Jun; 75(6 Pt 2):V15-24. PubMed ID: 3568336
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of myocardial "stunning".
    Bolli R
    Circulation; 1990 Sep; 82(3):723-38. PubMed ID: 2203553
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Allopurinol modulates reactive oxygen species generation and Ca2+ overload in ischemia-reperfused heart and hypoxia-reoxygenated cardiomyocytes.
    Kang SM; Lim S; Song H; Chang W; Lee S; Bae SM; Chung JH; Lee H; Kim HG; Yoon DH; Kim TW; Jang Y; Sung JM; Chung NS; Hwang KC
    Eur J Pharmacol; 2006 Mar; 535(1-3):212-9. PubMed ID: 16516885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prevention of the oxygen paradox in the isolated cardiomyocyte and the whole heart.
    Piper HM; Siegmund B; Schlüter KD
    Am J Cardiovasc Pathol; 1992; 4(2):115-22. PubMed ID: 1524796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Controlled versus hyperemic flow during reperfusion of jeopardized ischemic myocardium.
    Peng CF; Murphy ML; Colwell K; Straub KD
    Am Heart J; 1989 Mar; 117(3):515-22. PubMed ID: 2919530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Physiopathological basis of protection of the ischemic myocardium].
    Lerch R; Benzi R
    Schweiz Med Wochenschr; 1990 Oct; 120(42):1523-30. PubMed ID: 2237340
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of mitochondria in ischemic heart disease.
    Ferrari R
    J Cardiovasc Pharmacol; 1996; 28 Suppl 1():S1-10. PubMed ID: 8891865
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consequences of brief ischemia: stunning, preconditioning, and their clinical implications: part 1.
    Kloner RA; Jennings RB
    Circulation; 2001 Dec; 104(24):2981-9. PubMed ID: 11739316
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of ischemic injury in the heart.
    Schrader J
    Basic Res Cardiol; 1985; 80 Suppl 2():135-9. PubMed ID: 3904719
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the reverse mode of the Na+/Ca2+ exchanger in reoxygenation-induced cardiomyocyte injury.
    Schäfer C; Ladilov Y; Inserte J; Schäfer M; Haffner S; Garcia-Dorado D; Piper HM
    Cardiovasc Res; 2001 Aug; 51(2):241-50. PubMed ID: 11470463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Understanding the temporal relationship of ATP loss, calcium loading, and rigor contracture during anoxia, and hypercontracture after anoxia in cardiac myocytes.
    Stowe DF
    Cardiovasc Res; 1999 Aug; 43(2):285-7. PubMed ID: 10536657
    [No Abstract]   [Full Text] [Related]  

  • 19. Mechanisms of reoxygenation injury in cultured ventricular myocytes.
    Quaife RA; Kohmoto O; Barry WH
    Circulation; 1991 Feb; 83(2):566-77. PubMed ID: 1991375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic recovery of isolated adult rat cardiomyocytes after energy depletion: existence of an ATP threshold?
    Bonz A; Siegmund B; Ladilov Y; Vahl CF; Piper HM
    J Mol Cell Cardiol; 1998 Oct; 30(10):2111-9. PubMed ID: 9799663
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.