These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 2659910)

  • 1. Picosecond optical breakdown: tissue effects and reduction of collateral damage.
    Zysset B; Fujimoto JG; Puliafito CA; Birngruber R; Deutsch TF
    Lasers Surg Med; 1989; 9(3):193-204. PubMed ID: 2659910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intraocular photodisruption with picosecond and nanosecond laser pulses: tissue effects in cornea, lens, and retina.
    Vogel A; Capon MR; Asiyo-Vogel MN; Birngruber R
    Invest Ophthalmol Vis Sci; 1994 Jun; 35(7):3032-44. PubMed ID: 8206720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Mechanism of action, scope of the damage and reduction of side effects in intraocular Nd:YAG laser surgery].
    Vogel A; Schweiger P; Frieser A; Asiyo M; Birngruber R
    Fortschr Ophthalmol; 1990; 87(6):675-87. PubMed ID: 2086418
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Plasma formation in Nd:YAG laser surgery].
    Jungnickel K; Rein S; Vogel A
    Ophthalmologe; 1992 Aug; 89(4):283-7. PubMed ID: 1304200
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Intrastromal refractive corneal surgery with pico-second Nd:YAG laser pulses].
    Vogel A; Asiyo-Vogel M; Birngruber R
    Ophthalmologe; 1994 Oct; 91(5):655-62. PubMed ID: 7812100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water.
    Juhasz T; Kastis GA; Suárez C; Bor Z; Bron WE
    Lasers Surg Med; 1996; 19(1):23-31. PubMed ID: 8836993
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanisms of intraocular photodisruption with picosecond and nanosecond laser pulses.
    Vogel A; Busch S; Jungnickel K; Birngruber R
    Lasers Surg Med; 1994; 15(1):32-43. PubMed ID: 7997046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Initial clinical experience with the picosecond Nd:YLF laser for intraocular therapeutic applications.
    Geerling G; Roider J; Schmidt-Erfurt U; Nahen K; el-Hifnawi el-S ; Laqua H; Vogel A
    Br J Ophthalmol; 1998 May; 82(5):504-9. PubMed ID: 9713056
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraocular microsurgery with a picosecond Nd:YAG laser.
    Lin CP; Weaver YK; Birngruber R; Fujimoto JG; Puliafito CA
    Lasers Surg Med; 1994; 15(1):44-53. PubMed ID: 7997047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pulsed laser damage thresholds and laser treatment energy parameters, in vivo, of human aphakic intraocular membranes.
    Davi SK
    Lasers Surg Med; 1986; 6(5):449-58. PubMed ID: 3807631
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelial damage thresholds for retrocorneal Q-switched neodymium:YAG laser pulses in monkeys.
    Martin NF; Gaasterland DE; Rodrigues MM; Thomas G; Cummins CE
    Ophthalmology; 1985 Oct; 92(10):1382-6. PubMed ID: 3840876
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of shock waves and cavitation bubbles generated by picosecond laser pulses in corneal tissue and water.
    Juhasz T; Hu XH; Turi L; Bor Z
    Lasers Surg Med; 1994; 15(1):91-8. PubMed ID: 7997052
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cavitation bubble dynamics and acoustic transient generation in ocular surgery with pulsed neodymium: YAG lasers.
    Vogel A; Hentschel W; Holzfuss J; Lauterborn W
    Ophthalmology; 1986 Oct; 93(10):1259-69. PubMed ID: 3785885
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a Noninvasive, Laser-Assisted Experimental Model of Corneal Endothelial Cell Loss.
    Holzhey A; Sonntag S; Rendenbach J; Ernesti JS; Kakkassery V; Grisanti S; Reinholz F; Freidank S; Vogel A; Ranjbar M
    J Vis Exp; 2020 Apr; (158):. PubMed ID: 32391812
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cell viability and shock wave amplitudes in the endothelium of porcine cornea exposed to ultrashort laser pulses.
    Hussain SA; Milián C; Crotti C; Kowalczuk L; Alahyane F; Essaïdi Z; Couairon A; Schanne-Klein MC; Plamann K
    Graefes Arch Clin Exp Ophthalmol; 2017 May; 255(5):945-953. PubMed ID: 28101654
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ablation of porcine ligamentum flavum with Ho:YAG, q-switched Ho:YAG, and quadrupled Nd:YAG lasers.
    Johnson MR; Codd PJ; Hill WM; Boettcher T
    Lasers Surg Med; 2015 Dec; 47(10):839-51. PubMed ID: 26415136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intraocular lens damage from Nd:YAG laser pulses focused in the vitreous. Part I: Q-switched lasers.
    Capon M; Mellerio J; Docchio F
    J Cataract Refract Surg; 1988 Sep; 14(5):526-9. PubMed ID: 3183934
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corneal epithelial injury thresholds for multiple-pulse exposures to Tm:YAG laser radiation at 2.02 microm.
    McCally RL; Bargeron CB
    Health Phys; 2003 Oct; 85(4):420-7. PubMed ID: 13678282
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Corneal ablation by nanosecond, picosecond, and femtosecond lasers at 532 and 625 nm.
    Stern D; Schoenlein RW; Puliafito CA; Dobi ET; Birngruber R; Fujimoto JG
    Arch Ophthalmol; 1989 Apr; 107(4):587-92. PubMed ID: 2705929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Endothelial damage from retrocorneal mode-locked neodymium:YAG laser pulses in monkeys.
    Martin NF; Gaasterland DE; Rodrigues MM; Thomas G; Cummins CE
    Ophthalmology; 1985 Oct; 92(10):1376-81. PubMed ID: 3840875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.