BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 26599106)

  • 1. Multi-Parametric MRI and Texture Analysis to Visualize Spatial Histologic Heterogeneity and Tumor Extent in Glioblastoma.
    Hu LS; Ning S; Eschbacher JM; Gaw N; Dueck AC; Smith KA; Nakaji P; Plasencia J; Ranjbar S; Price SJ; Tran N; Loftus J; Jenkins R; O'Neill BP; Elmquist W; Baxter LC; Gao F; Frakes D; Karis JP; Zwart C; Swanson KR; Sarkaria J; Wu T; Mitchell JR; Li J
    PLoS One; 2015; 10(11):e0141506. PubMed ID: 26599106
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Radiogenomics to characterize regional genetic heterogeneity in glioblastoma.
    Hu LS; Ning S; Eschbacher JM; Baxter LC; Gaw N; Ranjbar S; Plasencia J; Dueck AC; Peng S; Smith KA; Nakaji P; Karis JP; Quarles CC; Wu T; Loftus JC; Jenkins RB; Sicotte H; Kollmeyer TM; O'Neill BP; Elmquist W; Hoxworth JM; Frakes D; Sarkaria J; Swanson KR; Tran NL; Li J; Mitchell JR
    Neuro Oncol; 2017 Jan; 19(1):128-137. PubMed ID: 27502248
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Texture analysis on diffusion tensor imaging: discriminating glioblastoma from single brain metastasis.
    Skogen K; Schulz A; Helseth E; Ganeshan B; Dormagen JB; Server A
    Acta Radiol; 2019 Mar; 60(3):356-366. PubMed ID: 29860889
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantifying intra-tumoral genetic heterogeneity of glioblastoma toward precision medicine using MRI and a data-inclusive machine learning algorithm.
    Wang L; Wang H; D'Angelo F; Curtin L; Sereduk CP; Leon G; Singleton KW; Urcuyo J; Hawkins-Daarud A; Jackson PR; Krishna C; Zimmerman RS; Patra DP; Bendok BR; Smith KA; Nakaji P; Donev K; Baxter LC; Mrugała MM; Ceccarelli M; Iavarone A; Swanson KR; Tran NL; Hu LS; Li J
    PLoS One; 2024; 19(4):e0299267. PubMed ID: 38568950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning based on multi-parametric magnetic resonance imaging to differentiate glioblastoma multiforme from primary cerebral nervous system lymphoma.
    Nakagawa M; Nakaura T; Namimoto T; Kitajima M; Uetani H; Tateishi M; Oda S; Utsunomiya D; Makino K; Nakamura H; Mukasa A; Hirai T; Yamashita Y
    Eur J Radiol; 2018 Nov; 108():147-154. PubMed ID: 30396648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of glioblastoma heterogeneity on survival stratification: a multimodal MR imaging texture analysis.
    Liu Y; Zhang X; Feng N; Yin L; He Y; Xu X; Lu H
    Acta Radiol; 2018 Oct; 59(10):1239-1246. PubMed ID: 29430935
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of tumor-derived MRI-texture features for discrimination of molecular subtypes and prediction of 12-month survival status in glioblastoma.
    Yang D; Rao G; Martinez J; Veeraraghavan A; Rao A
    Med Phys; 2015 Nov; 42(11):6725-35. PubMed ID: 26520762
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine Learning-based Texture Analysis of Contrast-enhanced MR Imaging to Differentiate between Glioblastoma and Primary Central Nervous System Lymphoma.
    Kunimatsu A; Kunimatsu N; Yasaka K; Akai H; Kamiya K; Watadani T; Mori H; Abe O
    Magn Reson Med Sci; 2019 Jan; 18(1):44-52. PubMed ID: 29769456
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-parametric (ADC/PWI/T2-w) image fusion approach for accurate semi-automatic segmentation of tumorous regions in glioblastoma multiforme.
    Fathi Kazerooni A; Mohseni M; Rezaei S; Bakhshandehpour G; Saligheh Rad H
    MAGMA; 2015 Feb; 28(1):13-22. PubMed ID: 24691860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Robust texture features for response monitoring of glioblastoma multiforme on T1-weighted and T2-FLAIR MR images: a preliminary investigation in terms of identification and segmentation.
    Assefa D; Keller H; Ménard C; Laperriere N; Ferrari RJ; Yeung I
    Med Phys; 2010 Apr; 37(4):1722-36. PubMed ID: 20443493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Radiomics features to distinguish glioblastoma from primary central nervous system lymphoma on multi-parametric MRI.
    Kim Y; Cho HH; Kim ST; Park H; Nam D; Kong DS
    Neuroradiology; 2018 Dec; 60(12):1297-1305. PubMed ID: 30232517
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-parametric and multi-regional histogram analysis of MRI: modality integration reveals imaging phenotypes of glioblastoma.
    Li C; Wang S; Serra A; Torheim T; Yan JL; Boonzaier NR; Huang Y; Matys T; McLean MA; Markowetz F; Price SJ
    Eur Radiol; 2019 Sep; 29(9):4718-4729. PubMed ID: 30707277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Differentiation of Pseudoprogression from True Progressionin Glioblastoma Patients after Standard Treatment: A Machine Learning Strategy Combinedwith Radiomics Features from T
    Sun YZ; Yan LF; Han Y; Nan HY; Xiao G; Tian Q; Pu WH; Li ZY; Wei XC; Wang W; Cui GB
    BMC Med Imaging; 2021 Feb; 21(1):17. PubMed ID: 33535988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of survival with multi-scale radiomic analysis in glioblastoma patients.
    Chaddad A; Sabri S; Niazi T; Abdulkarim B
    Med Biol Eng Comput; 2018 Dec; 56(12):2287-2300. PubMed ID: 29915951
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An initial experience of machine learning based on multi-sequence texture parameters in magnetic resonance imaging to differentiate glioblastoma from brain metastases.
    Tateishi M; Nakaura T; Kitajima M; Uetani H; Nakagawa M; Inoue T; Kuroda JI; Mukasa A; Yamashita Y
    J Neurol Sci; 2020 Mar; 410():116514. PubMed ID: 31869660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A generalized parametric response mapping method for analysis of multi-parametric imaging: A feasibility study with application to glioblastoma.
    Lausch A; Yeung TP; Chen J; Law E; Wang Y; Urbini B; Donelli F; Manco L; Fainardi E; Lee TY; Wong E
    Med Phys; 2017 Nov; 44(11):6074-6084. PubMed ID: 28875538
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Primary central nervous system lymphoma and atypical glioblastoma: Differentiation using radiomics approach.
    Suh HB; Choi YS; Bae S; Ahn SS; Chang JH; Kang SG; Kim EH; Kim SH; Lee SK
    Eur Radiol; 2018 Sep; 28(9):3832-3839. PubMed ID: 29626238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying spatial imaging biomarkers of glioblastoma multiforme for survival group prediction.
    Zhou M; Chaudhury B; Hall LO; Goldgof DB; Gillies RJ; Gatenby RA
    J Magn Reson Imaging; 2017 Jul; 46(1):115-123. PubMed ID: 27678245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Aggressive resection at the infiltrative margins of glioblastoma facilitated by intraoperative fluorescein guidance.
    Neira JA; Ung TH; Sims JS; Malone HR; Chow DS; Samanamud JL; Zanazzi GJ; Guo X; Bowden SG; Zhao B; Sheth SA; McKhann GM; Sisti MB; Canoll P; D'Amico RS; Bruce JN
    J Neurosurg; 2017 Jul; 127(1):111-122. PubMed ID: 27715437
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Novel Radiomic Features Based on Joint Intensity Matrices for Predicting Glioblastoma Patient Survival Time.
    Chaddad A; Daniel P; Desrosiers C; Toews M; Abdulkarim B
    IEEE J Biomed Health Inform; 2019 Mar; 23(2):795-804. PubMed ID: 29993848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.