These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
613 related articles for article (PubMed ID: 26599403)
1. Cobalt sulfide/N,S codoped porous carbon core-shell nanocomposites as superior bifunctional electrocatalysts for oxygen reduction and evolution reactions. Chen B; Li R; Ma G; Gou X; Zhu Y; Xia Y Nanoscale; 2015 Dec; 7(48):20674-84. PubMed ID: 26599403 [TBL] [Abstract][Full Text] [Related]
2. One-Step Conversion from Core-Shell Metal-Organic Framework Materials to Cobalt and Nitrogen Codoped Carbon Nanopolyhedra with Hierarchically Porous Structure for Highly Efficient Oxygen Reduction. Hu Z; Zhang Z; Li Z; Dou M; Wang F ACS Appl Mater Interfaces; 2017 May; 9(19):16109-16116. PubMed ID: 28452486 [TBL] [Abstract][Full Text] [Related]
3. Bamboo-like nitrogen-doped porous carbon nanofibers encapsulated nickel-cobalt alloy nanoparticles composite material derived from the electrospun fiber of a bimetal-organic framework as efficient bifunctional oxygen electrocatalysts. Feng C; Guo Y; Xie Y; Cao X; Li S; Zhang L; Wang W; Wang J Nanoscale; 2020 Mar; 12(10):5942-5952. PubMed ID: 32108837 [TBL] [Abstract][Full Text] [Related]
4. Cobalt Nanoparticle-Embedded Porous Carbon Nanofibers with Inherent N- and F-Doping as Binder-Free Bifunctional Catalysts for Oxygen Reduction and Evolution Reactions. Singhal R; Kalra V Chemphyschem; 2017 Jan; 18(2):223-229. PubMed ID: 27813238 [TBL] [Abstract][Full Text] [Related]
5. Cobalt and cobalt oxides N-codoped porous carbon derived from metal-organic framework as bifunctional catalyst for oxygen reduction and oxygen evolution reactions. Xu G; Xu GC; Ban JJ; Zhang L; Lin H; Qi CL; Sun ZP; Jia DZ J Colloid Interface Sci; 2018 Jul; 521():141-149. PubMed ID: 29567602 [TBL] [Abstract][Full Text] [Related]
6. Bimetal Zeolitic Imidazolite Framework-Derived Iron-, Cobalt- and Nitrogen-Codoped Carbon Nanopolyhedra Electrocatalyst for Efficient Oxygen Reduction. Hu Z; Guo Z; Zhang Z; Dou M; Wang F ACS Appl Mater Interfaces; 2018 Apr; 10(15):12651-12658. PubMed ID: 29611701 [TBL] [Abstract][Full Text] [Related]
7. 3D Nitrogen, Sulfur-Codoped Carbon Nanomaterial-Supported Cobalt Oxides with Polyhedron-Like Particles Grafted onto Graphene Layers as Highly Active Bicatalysts for Oxygen-Evolving Reactions. Huang X; Wang J; Bao H; Zhang X; Huang Y ACS Appl Mater Interfaces; 2018 Feb; 10(8):7180-7190. PubMed ID: 29389106 [TBL] [Abstract][Full Text] [Related]
8. N-Doped porous carbon nanosheets decorated with graphitized carbon layer encapsulated Co Li L; Song L; Guo H; Xia W; Jiang C; Gao B; Wu C; Wang T; He J Nanoscale; 2019 Jan; 11(3):901-907. PubMed ID: 30411107 [TBL] [Abstract][Full Text] [Related]
9. Efficient Co-N/PC@CNT bifunctional electrocatalytic materials for oxygen reduction and oxygen evolution reactions based on metal-organic frameworks. Ban J; Xu G; Zhang L; Xu G; Yang L; Sun Z; Jia D Nanoscale; 2018 May; 10(19):9077-9086. PubMed ID: 29718034 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of nanoporous carbon-cobalt-oxide hybrid electrocatalysts by thermal conversion of metal-organic frameworks. Chaikittisilp W; Torad NL; Li C; Imura M; Suzuki N; Ishihara S; Ariga K; Yamauchi Y Chemistry; 2014 Apr; 20(15):4217-21. PubMed ID: 24623613 [TBL] [Abstract][Full Text] [Related]
11. ZIF-8/ZIF-67-Derived Co-N Zhang W; Yao X; Zhou S; Li X; Li L; Yu Z; Gu L Small; 2018 Jun; 14(24):e1800423. PubMed ID: 29741813 [TBL] [Abstract][Full Text] [Related]
12. Cobalt Sulfide Nanowires Core Encapsulated by a N, S Codoped Graphitic Carbon Shell for Efficient Oxygen Reduction Reaction. Han C; Li Q; Wang D; Lu Q; Xing Z; Yang X Small; 2018 Apr; 14(17):e1703642. PubMed ID: 29611279 [TBL] [Abstract][Full Text] [Related]
13. Homogeneously Dispersed Co Xiao Z; Xiao G; Shi M; Zhu Y ACS Appl Mater Interfaces; 2018 May; 10(19):16436-16448. PubMed ID: 29613758 [TBL] [Abstract][Full Text] [Related]
14. Metal-organic-frameworks derived cobalt embedded in various carbon structures as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Chen B; Ma G; Zhu Y; Xia Y Sci Rep; 2017 Jul; 7(1):5266. PubMed ID: 28706250 [TBL] [Abstract][Full Text] [Related]
15. Nitrogen-doped graphene/carbon nanotube hybrids: in situ formation on bifunctional catalysts and their superior electrocatalytic activity for oxygen evolution/reduction reaction. Tian GL; Zhao MQ; Yu D; Kong XY; Huang JQ; Zhang Q; Wei F Small; 2014 Jun; 10(11):2251-9. PubMed ID: 24574006 [TBL] [Abstract][Full Text] [Related]
16. Co Wu LL; Wang QS; Li J; Long Y; Liu Y; Song SY; Zhang HJ Small; 2018 May; 14(20):e1704035. PubMed ID: 29665268 [TBL] [Abstract][Full Text] [Related]
17. Cobalt-embedded nitrogen doped carbon nanotubes: a bifunctional catalyst for oxygen electrode reactions in a wide pH range. Wang Z; Xiao S; Zhu Z; Long X; Zheng X; Lu X; Yang S ACS Appl Mater Interfaces; 2015 Feb; 7(7):4048-55. PubMed ID: 25650772 [TBL] [Abstract][Full Text] [Related]
18. Uniform copper-cobalt phosphides embedded in N-doped carbon frameworks as efficient bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries. Zhang H; Yang Z; Wang X; Yan S; Zhou T; Zhang C; Telfer SG; Liu S Nanoscale; 2019 Oct; 11(37):17384-17395. PubMed ID: 31524914 [TBL] [Abstract][Full Text] [Related]
19. Hydrothermal Synthesis of Highly Dispersed Co Guan J; Zhang Z; Ji J; Dou M; Wang F ACS Appl Mater Interfaces; 2017 Sep; 9(36):30662-30669. PubMed ID: 28846370 [TBL] [Abstract][Full Text] [Related]
20. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Yang HB; Miao J; Hung SF; Chen J; Tao HB; Wang X; Zhang L; Chen R; Gao J; Chen HM; Dai L; Liu B Sci Adv; 2016 Apr; 2(4):e1501122. PubMed ID: 27152333 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]