BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 26599447)

  • 1. Fast Adaptive Thermal Camouflage Based on Flexible VO₂/Graphene/CNT Thin Films.
    Xiao L; Ma H; Liu J; Zhao W; Jia Y; Zhao Q; Liu K; Wu Y; Wei Y; Fan S; Jiang K
    Nano Lett; 2015 Dec; 15(12):8365-70. PubMed ID: 26599447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flexible Mid-Infrared Radiation Modulator with Multilayer Graphene Thin Film by Ionic Liquid Gating.
    Sun Y; Wang Y; Zhang C; Chen S; Chang H; Guo N; Liu J; Jia Y; Wang L; Weng Y; Zhao W; Jiang K; Xiao L
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13538-13544. PubMed ID: 30896153
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Graphene-Based Adaptive Thermal Camouflage.
    Salihoglu O; Uzlu HB; Yakar O; Aas S; Balci O; Kakenov N; Balci S; Olcum S; Süzer S; Kocabas C
    Nano Lett; 2018 Jul; 18(7):4541-4548. PubMed ID: 29947216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiwavelength camouflage metamaterials with adjustable emissivity.
    Gao H; Liang Y; Huang Y; Huang H; Li R; Peng W
    Opt Express; 2023 Oct; 31(22):36770-36780. PubMed ID: 38017820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive tuning of infrared emission using VO
    Larciprete MC; Centini M; Paoloni S; Fratoddi I; Dereshgi SA; Tang K; Wu J; Aydin K
    Sci Rep; 2020 Jul; 10(1):11544. PubMed ID: 32665664
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sputtering Flexible VO
    Cao C; Hu B; Tu G; Ji X; Li Z; Xu F; Chang T; Jin P; Cao X
    ACS Appl Mater Interfaces; 2022 Jun; 14(24):28105-28113. PubMed ID: 35679605
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Freestanding Graphene Fabric Film for Flexible Infrared Camouflage.
    Cui G; Peng Z; Chen X; Cheng Y; Lu L; Cao S; Ji S; Qu G; Zhao L; Wang S; Wang S; Li Y; Ci H; Li M; Liu Z
    Adv Sci (Weinh); 2022 Feb; 9(5):e2105004. PubMed ID: 34914865
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tunable Infrared Emissivity in Multilayer Graphene by Ionic Liquid Intercalation.
    Zhao L; Zhang R; Deng C; Peng Y; Jiang T
    Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31370164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Thermal Radiation Modulation Platform by Emissivity Engineering with Graded Metal-Insulator Transition.
    Tang K; Wang X; Dong K; Li Y; Li J; Sun B; Zhang X; Dames C; Qiu C; Yao J; Wu J
    Adv Mater; 2020 Sep; 32(36):e1907071. PubMed ID: 32700403
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and Temporal Modulation of Thermal Emission.
    Coppens ZJ; Valentine JG
    Adv Mater; 2017 Oct; 29(39):. PubMed ID: 28833653
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermochromic Vanadium Dioxide Nanostructures for Smart Windows and Radiative Cooling.
    Yoon J; Kim KS; Hong WK
    Chemistry; 2024 May; ():e202400826. PubMed ID: 38818667
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Recent Advances in Fabrication of Flexible, Thermochromic Vanadium Dioxide Films for Smart Windows.
    Kim J; Paik T
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ultrathin Metal Film on Graphene for Percolation-Threshold-Limited Thermal Emissivity Control.
    Lee G; Jang S; Kim YB; Cho D; Jeong D; Chae S; Myoung JM; Kim H; Kim SK; Lee JO
    Adv Mater; 2023 Sep; 35(38):e2301227. PubMed ID: 37200230
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous Photothermal and Radiative Cooling Energy Harvesting by VO
    Liu M; Li X; Li L; Li L; Zhao S; Lu K; Chen K; Zhu J; Zhou T; Hu C; Lin Z; Xu C; Zhao B; Zhang G; Pei G; Zou C
    ACS Nano; 2023 May; 17(10):9501-9509. PubMed ID: 37166276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-strength, low infrared-emission nonmetallic films for highly efficient Joule/solar heating, electromagnetic interference shielding and thermal camouflage.
    Zhang Y; Li L; Cao Y; Yang Y; Wang W; Wang J
    Mater Horiz; 2023 Jan; 10(1):235-247. PubMed ID: 36367197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-Term Stable Thermal Emission Modulator Based on Single-Walled Carbon Nanotubes.
    Ji D; Li X; Rezeq M; Cantwell W; Zheng L
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37818-37827. PubMed ID: 37523775
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tunable infrared emitter based on phase-changing material GST for visible-infrared compatible camouflage with thermal management.
    Kang Q; Guo K; Guo Z
    Phys Chem Chem Phys; 2023 Oct; 25(40):27668-27676. PubMed ID: 37811767
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Far-field radiative thermal rectifier based on nanostructures with vanadium dioxide.
    Jia S; Fu Y; Su Y; Ma Y
    Opt Lett; 2018 Nov; 43(22):5619-5622. PubMed ID: 30439909
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Graphene-Enabled Adaptive Infrared Textiles.
    Ergoktas MS; Bakan G; Steiner P; Bartlam C; Malevich Y; Ozden-Yenigun E; He G; Karim N; Cataldi P; Bissett MA; Kinloch IA; Novoselov KS; Kocabas C
    Nano Lett; 2020 Jul; 20(7):5346-5352. PubMed ID: 32551694
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector.
    Notarianni M; Liu J; Mirri F; Pasquali M; Motta N
    Nanotechnology; 2014 Oct; 25(43):435405. PubMed ID: 25301789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.