These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 26599468)
1. Calculating the Fickian diffusivity for a lattice-based random walk with agents and obstacles of different shapes and sizes. Ellery AJ; Baker RE; Simpson MJ Phys Biol; 2015 Nov; 12(6):066010. PubMed ID: 26599468 [TBL] [Abstract][Full Text] [Related]
2. Communication: Distinguishing between short-time non-Fickian diffusion and long-time Fickian diffusion for a random walk on a crowded lattice. Ellery AJ; Baker RE; Simpson MJ J Chem Phys; 2016 May; 144(17):171104. PubMed ID: 27155618 [TBL] [Abstract][Full Text] [Related]
3. An analytical method for disentangling the roles of adhesion and crowding for random walk models on a crowded lattice. Ellery AJ; Baker RE; Simpson MJ Phys Biol; 2016 Sep; 13(5):05LT02. PubMed ID: 27597573 [TBL] [Abstract][Full Text] [Related]
4. Characterizing transport through a crowded environment with different obstacle sizes. Ellery AJ; Simpson MJ; McCue SW; Baker RE J Chem Phys; 2014 Feb; 140(5):054108. PubMed ID: 24511923 [TBL] [Abstract][Full Text] [Related]
5. Random walk of passive tracers among randomly moving obstacles. Gori M; Donato I; Floriani E; Nardecchia I; Pettini M Theor Biol Med Model; 2016 Apr; 13():13. PubMed ID: 27075996 [TBL] [Abstract][Full Text] [Related]
6. Motion in a crowded environment: the influence of obstacles' size and shape and model of transport. Polanowski P; Sikorski A J Mol Model; 2019 Mar; 25(3):84. PubMed ID: 30826982 [TBL] [Abstract][Full Text] [Related]
7. Anomalous diffusion due to hindering by mobile obstacles undergoing Brownian motion or Orstein-Ulhenbeck processes. Berry H; Chaté H Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022708. PubMed ID: 25353510 [TBL] [Abstract][Full Text] [Related]
9. Non-universal tracer diffusion in crowded media of non-inert obstacles. Ghosh SK; Cherstvy AG; Metzler R Phys Chem Chem Phys; 2015 Jan; 17(3):1847-58. PubMed ID: 25474476 [TBL] [Abstract][Full Text] [Related]
10. In the eye of the beholder: Inhomogeneous distribution of high-resolution shapes within the random-walk ensemble. Müller CL; Sbalzarini IF; van Gunsteren WF; Zagrović B; Hünenberger PH J Chem Phys; 2009 Jun; 130(21):214904. PubMed ID: 19508095 [TBL] [Abstract][Full Text] [Related]
12. Lattice-free descriptions of collective motion with crowding and adhesion. Johnston ST; Simpson MJ; Plank MJ Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062720. PubMed ID: 24483499 [TBL] [Abstract][Full Text] [Related]
13. Elucidating the origin of anomalous diffusion in crowded fluids. Szymanski J; Weiss M Phys Rev Lett; 2009 Jul; 103(3):038102. PubMed ID: 19659323 [TBL] [Abstract][Full Text] [Related]
14. Simulation of diffusion in a crowded environment. Polanowski P; Sikorski A Soft Matter; 2014 May; 10(20):3597-607. PubMed ID: 24663121 [TBL] [Abstract][Full Text] [Related]
15. Anomalous diffusion and multifractional Brownian motion: simulating molecular crowding and physical obstacles in systems biology. Marquez-Lago TT; Leier A; Burrage K IET Syst Biol; 2012 Aug; 6(4):134-42. PubMed ID: 23039694 [TBL] [Abstract][Full Text] [Related]
16. Comparison of different models of motion in a crowded environment: a Monte Carlo study. Polanowski P; Sikorski A Soft Matter; 2017 Feb; 13(8):1693-1701. PubMed ID: 28154876 [TBL] [Abstract][Full Text] [Related]
17. Modeling diffusional transport in the interphase cell nucleus. Wedemeier A; Merlitz H; Wu CX; Langowski J J Chem Phys; 2007 Jul; 127(4):045102. PubMed ID: 17672725 [TBL] [Abstract][Full Text] [Related]
18. An analytical correlated random walk model and its application to understand subdiffusion in crowded environment. Hasnain S; Bandyopadhyay P J Chem Phys; 2015 Sep; 143(11):114104. PubMed ID: 26395684 [TBL] [Abstract][Full Text] [Related]
19. Interpretation of diffusion coefficients in nanostructured materials from random walk numerical simulation. Anta JA; Mora-Seró I; Dittrich T; Bisquert J Phys Chem Chem Phys; 2008 Aug; 10(30):4478-85. PubMed ID: 18654689 [TBL] [Abstract][Full Text] [Related]
20. Ultraslow diffusion in an exactly solvable non-Markovian random walk. da Silva MA; Viswanathan GM; Cressoni JC Phys Rev E Stat Nonlin Soft Matter Phys; 2014 May; 89(5):052110. PubMed ID: 25353742 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]