BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

629 related articles for article (PubMed ID: 26599623)

  • 1. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions.
    Fong EL; Wan X; Yang J; Morgado M; Mikos AG; Harrington DA; Navone NM; Farach-Carson MC
    Biomaterials; 2016 Jan; 77():164-72. PubMed ID: 26599623
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prostate cancer cells induce osteoblast differentiation through a Cbfa1-dependent pathway.
    Yang J; Fizazi K; Peleg S; Sikes CR; Raymond AK; Jamal N; Hu M; Olive M; Martinez LA; Wood CG; Logothetis CJ; Karsenty G; Navone NM
    Cancer Res; 2001 Jul; 61(14):5652-9. PubMed ID: 11454720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Secretome analysis of an osteogenic prostate tumor identifies complex signaling networks mediating cross-talk of cancer and stromal cells within the tumor microenvironment.
    Lee YC; Gajdosik MS; Josic D; Clifton JG; Logothetis C; Yu-Lee LY; Gallick GE; Maity SN; Lin SH
    Mol Cell Proteomics; 2015 Mar; 14(3):471-83. PubMed ID: 25527621
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prostate cancer cell-stromal cell crosstalk via FGFR1 mediates antitumor activity of dovitinib in bone metastases.
    Wan X; Corn PG; Yang J; Palanisamy N; Starbuck MW; Efstathiou E; Li Ning Tapia EM; Zurita AJ; Aparicio A; Ravoori MK; Vazquez ES; Robinson DR; Wu YM; Cao X; Iyer MK; McKeehan W; Kundra V; Wang F; Troncoso P; Chinnaiyan AM; Logothetis CJ; Navone NM
    Sci Transl Med; 2014 Sep; 6(252):252ra122. PubMed ID: 25186177
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CXCR4 pharmacogical inhibition reduces bone and soft tissue metastatic burden by affecting tumor growth and tumorigenic potential in prostate cancer preclinical models.
    Gravina GL; Mancini A; Muzi P; Ventura L; Biordi L; Ricevuto E; Pompili S; Mattei C; Di Cesare E; Jannini EA; Festuccia C
    Prostate; 2015 Sep; 75(12):1227-46. PubMed ID: 26073897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Paracrine interactions between LNCaP prostate cancer cells and bioengineered bone in 3D in vitro culture reflect molecular changes during bone metastasis.
    Sieh S; Taubenberger AV; Lehman ML; Clements JA; Nelson CC; Hutmacher DW
    Bone; 2014 Jun; 63():121-31. PubMed ID: 24530694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Using high throughput microtissue culture to study the difference in prostate cancer cell behavior and drug response in 2D and 3D co-cultures.
    Mosaad E; Chambers K; Futrega K; Clements J; Doran MR
    BMC Cancer; 2018 May; 18(1):592. PubMed ID: 29793440
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts.
    Fizazi K; Yang J; Peleg S; Sikes CR; Kreimann EL; Daliani D; Olive M; Raymond KA; Janus TJ; Logothetis CJ; Karsenty G; Navone NM
    Clin Cancer Res; 2003 Jul; 9(7):2587-97. PubMed ID: 12855635
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Endothelial-to-Osteoblast Conversion Generates Osteoblastic Metastasis of Prostate Cancer.
    Lin SC; Lee YC; Yu G; Cheng CJ; Zhou X; Chu K; Murshed M; Le NT; Baseler L; Abe JI; Fujiwara K; deCrombrugghe B; Logothetis CJ; Gallick GE; Yu-Lee LY; Maity SN; Lin SH
    Dev Cell; 2017 Jun; 41(5):467-480.e3. PubMed ID: 28586644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Canine prostatic cancer cell line (LuMa) with osteoblastic bone metastasis.
    Elshafae SM; Dirksen WP; Alasonyalilar-Demirer A; Breitbach J; Yuan S; Kantake N; Supsavhad W; Hassan BB; Attia Z; Alstadt LB; Rosol TJ
    Prostate; 2020 Jun; 80(9):698-714. PubMed ID: 32348616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The molecular signature of the stroma response in prostate cancer-induced osteoblastic bone metastasis highlights expansion of hematopoietic and prostate epithelial stem cell niches.
    Özdemir BC; Hensel J; Secondini C; Wetterwald A; Schwaninger R; Fleischmann A; Raffelsberger W; Poch O; Delorenzi M; Temanni R; Mills IG; van der Pluijm G; Thalmann GN; Cecchini MG
    PLoS One; 2014; 9(12):e114530. PubMed ID: 25485970
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microenvironment engineering of osteoblastic bone metastases reveals osteomimicry of patient-derived prostate cancer xenografts.
    Shokoohmand A; Ren J; Baldwin J; Atack A; Shafiee A; Theodoropoulos C; Wille ML; Tran PA; Bray LJ; Smith D; Chetty N; Pollock PM; Hutmacher DW; Clements JA; Williams ED; Bock N
    Biomaterials; 2019 Nov; 220():119402. PubMed ID: 31400612
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA interference targeting PSCA suppresses primary tumor growth and metastasis formation of human prostate cancer xenografts in SCID mice.
    Zhao Z; He J; Kang R; Zhao S; Liu L; Li F
    Prostate; 2016 Feb; 76(2):184-98. PubMed ID: 26477693
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In-air production of 3D co-culture tumor spheroid hydrogels for expedited drug screening.
    Antunes J; Gaspar VM; Ferreira L; Monteiro M; Henrique R; Jerónimo C; Mano JF
    Acta Biomater; 2019 Aug; 94():392-409. PubMed ID: 31200118
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tasquinimod inhibits prostate cancer growth in bone through alterations in the bone microenvironment.
    Magnusson LU; Hagberg Thulin M; Plas P; Olsson A; Damber JE; Welén K
    Prostate; 2016 Mar; 76(4):383-93. PubMed ID: 26660725
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Suppression of EGF-R signaling reduces the incidence of prostate cancer metastasis in nude mice.
    Angelucci A; Gravina GL; Rucci N; Millimaggi D; Festuccia C; Muzi P; Teti A; Vicentini C; Bologna M
    Endocr Relat Cancer; 2006 Mar; 13(1):197-210. PubMed ID: 16601288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fibroblast and prostate tumor cell cross-talk: fibroblast differentiation, TGF-β, and extracellular matrix down-regulation.
    Coulson-Thomas VJ; Gesteira TF; Coulson-Thomas YM; Vicente CM; Tersariol IL; Nader HB; Toma L
    Exp Cell Res; 2010 Nov; 316(19):3207-26. PubMed ID: 20727350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New targets for therapy in prostate cancer: modulation of stromal-epithelial interactions.
    Chung LW; Hsieh CL; Law A; Sung SY; Gardner TA; Egawa M; Matsubara S; Zhau HE
    Urology; 2003 Nov; 62(5 Suppl 1):44-54. PubMed ID: 14607217
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanoparticle-mediated siRNA delivery assessed in a 3D co-culture model simulating prostate cancer bone metastasis.
    Fitzgerald KA; Guo J; Raftery RM; Castaño IM; Curtin CM; Gooding M; Darcy R; O' Brien FJ; O' Driscoll CM
    Int J Pharm; 2016 Sep; 511(2):1058-69. PubMed ID: 27492023
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyurethane foam scaffold as in vitro model for breast cancer bone metastasis.
    Angeloni V; Contessi N; De Marco C; Bertoldi S; Tanzi MC; Daidone MG; Farè S
    Acta Biomater; 2017 Nov; 63():306-316. PubMed ID: 28927931
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.