BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 26599685)

  • 1. Analysis of Allergenic Pollen by FTIR Microspectroscopy.
    Zimmerman B; Tafintseva V; Bağcıoğlu M; Høegh Berdahl M; Kohler A
    Anal Chem; 2016 Jan; 88(1):803-11. PubMed ID: 26599685
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discrimination of grass pollen of different species by FTIR spectroscopy of individual pollen grains.
    Diehn S; Zimmermann B; Tafintseva V; Bağcıoğlu M; Kohler A; Ohlson M; Fjellheim S; Kneipp J
    Anal Bioanal Chem; 2020 Sep; 412(24):6459-6474. PubMed ID: 32350580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pollen discrimination and classification by Fourier transform infrared (FT-IR) microspectroscopy and machine learning.
    Dell'Anna R; Lazzeri P; Frisanco M; Monti F; Malvezzi Campeggi F; Gottardini E; Bersani M
    Anal Bioanal Chem; 2009 Jul; 394(5):1443-52. PubMed ID: 19396429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Vibrational microspectroscopy enables chemical characterization of single pollen grains as well as comparative analysis of plant species based on pollen ultrastructure.
    Zimmermann B; Bağcıoğlu M; Sandt C; Kohler A
    Planta; 2015 Nov; 242(5):1237-50. PubMed ID: 26289829
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Multiscale Vibrational Spectroscopic Approach for Identification and Biochemical Characterization of Pollen.
    Bağcıoğlu M; Zimmermann B; Kohler A
    PLoS One; 2015; 10(9):e0137899. PubMed ID: 26376486
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterizing aeroallergens by infrared spectroscopy of fungal spores and pollen.
    Zimmermann B; Tkalčec Z; Mešić A; Kohler A
    PLoS One; 2015; 10(4):e0124240. PubMed ID: 25867755
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chemical characterization and identification of Pinaceae pollen by infrared microspectroscopy.
    Zimmermann B
    Planta; 2018 Jan; 247(1):171-180. PubMed ID: 28913637
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of pollen by vibrational spectroscopy.
    Zimmermann B
    Appl Spectrosc; 2010 Dec; 64(12):1364-73. PubMed ID: 21144154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of morphological and molecular composition changes in allergenic Artemisia vulgaris L. pollen under traffic pollution using SEM and FTIR spectroscopy.
    Depciuch J; Kasprzyk I; Roga E; Parlinska-Wojtan M
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):23203-23214. PubMed ID: 27604125
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of fluorescence spectroscopy and FTIR in differentiation of plant pollens.
    Mularczyk-Oliwa M; Bombalska A; Kaliszewski M; Włodarski M; Kopczyński K; Kwaśny M; Szpakowska M; Trafny EA
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():246-54. PubMed ID: 22765943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multicomponent cleaning verification of stainless steel surfaces for the removal of dairy residues using infrared microspectroscopy.
    Lang MP; Kocaoglu-Vurma NA; Harper WJ; Rodriguez-Saona LE
    J Food Sci; 2011 Mar; 76(2):C303-8. PubMed ID: 21535750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pollen identification by Fourier transform infrared photoacoustic spectroscopy.
    Parodi G; Dickerson P; Cloud J
    Appl Spectrosc; 2013 Mar; 67(3):342-8. PubMed ID: 23452500
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of Mie ripples in the synchrotron Fourier transform infrared spectra of spheroidal pollen grains.
    Blümel R; Lukacs R; Zimmermann B; Bağcıoğlu M; Kohler A
    J Opt Soc Am A Opt Image Sci Vis; 2018 Oct; 35(10):1769-1779. PubMed ID: 30462098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mie scatter corrections in single cell infrared microspectroscopy.
    Konevskikh T; Lukacs R; Blümel R; Ponossov A; Kohler A
    Faraday Discuss; 2016 Jun; 187():235-57. PubMed ID: 27034998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Study on the identification of six kinds of bee pollens by three-step infrared macro-fingerprint method].
    Wu J; Zhou Q; Wu LM; Au JD; Sun SQ; Hu FL
    Guang Pu Xue Yu Guang Pu Fen Xi; 2010 Feb; 30(2):353-7. PubMed ID: 20384123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurement of rumen dry matter and neutral detergent fiber degradability of feeds by Fourier-transform infrared spectroscopy.
    Belanche A; Weisbjerg MR; Allison GG; Newbold CJ; Moorby JM
    J Dairy Sci; 2014; 97(4):2361-75. PubMed ID: 24508438
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New method for pollen identification by FT-IR spectroscopy.
    Pappas CS; Tarantilis PA; Harizanis PC; Polissiou MG
    Appl Spectrosc; 2003 Jan; 57(1):23-7. PubMed ID: 14610932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recovery of absorbance spectra of micrometer-sized biological and inanimate particles.
    Lukacs R; Blümel R; Zimmerman B; Bağcıoğlu M; Kohler A
    Analyst; 2015 May; 140(9):3273-84. PubMed ID: 25797528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measurement of serum immunoglobulin G in dairy cattle using Fourier-transform infrared spectroscopy: a reagent free approach.
    Elsohaby I; Riley CB; Hou S; McClure JT; Shaw RA; Keefe GP
    Vet J; 2014 Dec; 202(3):510-5. PubMed ID: 25438729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modified locally weighted--partial least squares regression improving clinical predictions from infrared spectra of human serum samples.
    Perez-Guaita D; Kuligowski J; Quintás G; Garrigues S; Guardia Mde L
    Talanta; 2013 Mar; 107():368-75. PubMed ID: 23598236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.