These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Memory capacities for synaptic and structural plasticity. Knoblauch A; Palm G; Sommer FT Neural Comput; 2010 Feb; 22(2):289-341. PubMed ID: 19925281 [TBL] [Abstract][Full Text] [Related]
4. Storage capacity diverges with synaptic efficiency in an associative memory model with synaptic delay and pruning. Miyoshi S; Okada M IEEE Trans Neural Netw; 2004 Sep; 15(5):1215-27. PubMed ID: 15484896 [TBL] [Abstract][Full Text] [Related]
5. Memory capacity for sequences in a recurrent network with biological constraints. Leibold C; Kempter R Neural Comput; 2006 Apr; 18(4):904-41. PubMed ID: 16494695 [TBL] [Abstract][Full Text] [Related]
6. Experimental demonstration of associative memory with memristive neural networks. Pershin YV; Di Ventra M Neural Netw; 2010 Sep; 23(7):881-6. PubMed ID: 20605401 [TBL] [Abstract][Full Text] [Related]
7. Synaptic dynamics in analog VLSI. Bartolozzi C; Indiveri G Neural Comput; 2007 Oct; 19(10):2581-603. PubMed ID: 17716003 [TBL] [Abstract][Full Text] [Related]
8. Efficient supervised learning in networks with binary synapses. Baldassi C; Braunstein A; Brunel N; Zecchina R Proc Natl Acad Sci U S A; 2007 Jun; 104(26):11079-84. PubMed ID: 17581884 [TBL] [Abstract][Full Text] [Related]
9. Supervised Learning Using Spike-Timing-Dependent Plasticity of Memristive Synapses. Nishitani Y; Kaneko Y; Ueda M IEEE Trans Neural Netw Learn Syst; 2015 Dec; 26(12):2999-3008. PubMed ID: 26595417 [TBL] [Abstract][Full Text] [Related]
10. A working memory model based on fast Hebbian learning. Sandberg A; Tegnér J; Lansner A Network; 2003 Nov; 14(4):789-802. PubMed ID: 14653503 [TBL] [Abstract][Full Text] [Related]
11. Binary Willshaw learning yields high synaptic capacity for long-term familiarity memory. Sacramento J; Wichert A Biol Cybern; 2012 Feb; 106(2):123-33. PubMed ID: 22481645 [TBL] [Abstract][Full Text] [Related]
12. Maximum memory capacity on neural networks with short-term synaptic depression and facilitation. Mejias JF; Torres JJ Neural Comput; 2009 Mar; 21(3):851-71. PubMed ID: 18928372 [TBL] [Abstract][Full Text] [Related]
13. Stable memory and computation in randomly rewiring neural networks. Acker D; Paradis S; Miller P J Neurophysiol; 2019 Jul; 122(1):66-80. PubMed ID: 30969897 [TBL] [Abstract][Full Text] [Related]
14. Structural synaptic plasticity has high memory capacity and can explain graded amnesia, catastrophic forgetting, and the spacing effect. Knoblauch A; Körner E; Körner U; Sommer FT PLoS One; 2014; 9(5):e96485. PubMed ID: 24858841 [TBL] [Abstract][Full Text] [Related]
16. Learning may need only a few bits of synaptic precision. Baldassi C; Gerace F; Lucibello C; Saglietti L; Zecchina R Phys Rev E; 2016 May; 93(5):052313. PubMed ID: 27300916 [TBL] [Abstract][Full Text] [Related]
17. Covariance learning of correlated patterns in competitive networks. Minai AA Neural Comput; 1997 Apr; 9(3):667-81. PubMed ID: 9097478 [TBL] [Abstract][Full Text] [Related]
18. Improved bidirectional retrieval of sparse patterns stored by Hebbian learning. Sommer FT; Palm G Neural Netw; 1999 Mar; 12(2):281-297. PubMed ID: 12662704 [TBL] [Abstract][Full Text] [Related]
19. Memory capacity of networks with stochastic binary synapses. Dubreuil AM; Amit Y; Brunel N PLoS Comput Biol; 2014 Aug; 10(8):e1003727. PubMed ID: 25101662 [TBL] [Abstract][Full Text] [Related]
20. Memory dynamics in attractor networks with saliency weights. Tang H; Li H; Yan R Neural Comput; 2010 Jul; 22(7):1899-926. PubMed ID: 20235821 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]