These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 26599732)

  • 1. Single-molecule fluorimetry and gating currents inspire an improved optical voltage indicator.
    Treger JS; Priest MF; Bezanilla F
    Elife; 2015 Nov; 4():e10482. PubMed ID: 26599732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pado, a fluorescent protein with proton channel activity can optically monitor membrane potential, intracellular pH, and map gap junctions.
    Kang BE; Baker BJ
    Sci Rep; 2016 Apr; 6():23865. PubMed ID: 27040905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanistic studies of the genetically encoded fluorescent protein voltage probe ArcLight.
    Han Z; Jin L; Chen F; Loturco JJ; Cohen LB; Bondar A; Lazar J; Pieribone VA
    PLoS One; 2014; 9(11):e113873. PubMed ID: 25419571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression and testing in plants of ArcLight, a genetically-encoded voltage indicator used in neuroscience research.
    Matzke AJ; Matzke M
    BMC Plant Biol; 2015 Oct; 15():245. PubMed ID: 26459340
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optical consequences of a genetically-encoded voltage indicator with a pH sensitive fluorescent protein.
    Kang BE; Lee S; Baker BJ
    Neurosci Res; 2019 Sep; 146():13-21. PubMed ID: 30342069
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combinatorial mutagenesis of the voltage-sensing domain enables the optical resolution of action potentials firing at 60 Hz by a genetically encoded fluorescent sensor of membrane potential.
    Piao HH; Rajakumar D; Kang BE; Kim EH; Baker BJ
    J Neurosci; 2015 Jan; 35(1):372-85. PubMed ID: 25568129
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Directed Evolution of Key Residues in Fluorescent Protein Inverses the Polarity of Voltage Sensitivity in the Genetically Encoded Indicator ArcLight.
    Platisa J; Vasan G; Yang A; Pieribone VA
    ACS Chem Neurosci; 2017 Mar; 8(3):513-523. PubMed ID: 28045247
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Voltage imaging in the olfactory bulb using transgenic mouse lines expressing the genetically encoded voltage indicator ArcLight.
    Platisa J; Zeng H; Madisen L; Cohen LB; Pieribone VA; Storace DA
    Sci Rep; 2022 Feb; 12(1):1875. PubMed ID: 35115567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetically Encoded Voltage Indicators: Opportunities and Challenges.
    Yang HH; St-Pierre F
    J Neurosci; 2016 Sep; 36(39):9977-89. PubMed ID: 27683896
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dimeric fluorescent protein yields a bright, red-shifted GEVI capable of population signals in brain slice.
    Yi B; Kang BE; Lee S; Braubach S; Baker BJ
    Sci Rep; 2018 Oct; 8(1):15199. PubMed ID: 30315245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time detection of changes in yeast plasma membrane potential using genetically encoded voltage indicator proteins.
    Limapichat W; Pornthanakasem W; Satitthammachart C; Chitnumsub P; Leartsakulpanich U
    FEMS Yeast Res; 2020 Aug; 20(5):. PubMed ID: 32691845
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fluorescent protein voltage probes derived from ArcLight that respond to membrane voltage changes with fast kinetics.
    Han Z; Jin L; Platisa J; Cohen LB; Baker BJ; Pieribone VA
    PLoS One; 2013; 8(11):e81295. PubMed ID: 24312287
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Voltage-dependent conformational changes in human Ca(2+)- and voltage-activated K(+) channel, revealed by voltage-clamp fluorometry.
    Savalli N; Kondratiev A; Toro L; Olcese R
    Proc Natl Acad Sci U S A; 2006 Aug; 103(33):12619-24. PubMed ID: 16895996
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage-clamp fluorometry analysis of structural rearrangements of ATP-gated channel P2X2 upon hyperpolarization.
    Andriani RT; Kubo Y
    Elife; 2021 May; 10():. PubMed ID: 34009126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Charge movement of a voltage-sensitive fluorescent protein.
    Villalba-Galea CA; Sandtner W; Dimitrov D; Mutoh H; Knöpfel T; Bezanilla F
    Biophys J; 2009 Jan; 96(2):L19-21. PubMed ID: 19167283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of voltage clamp fluorimetry in understanding potassium channel gating: a review of Shaker fluorescence data.
    Horne AJ; Fedida D
    Can J Physiol Pharmacol; 2009 Jun; 87(6):411-8. PubMed ID: 19526034
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Imaging different cell populations in the mouse olfactory bulb using the genetically encoded voltage indicator ArcLight.
    Leong LM; Storace DA
    Neurophotonics; 2024 Jul; 11(3):033402. PubMed ID: 38288247
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Microscopic Capacitor Model of Voltage Coupling in Membrane Proteins: Gating Charge Fluctuations in Ci-VSD.
    Kim I; Warshel A
    J Phys Chem B; 2016 Jan; 120(3):418-32. PubMed ID: 26716721
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Voltage clamp fluorimetry studies of mammalian voltage-gated K(+) channel gating.
    Claydon TW; Fedida D
    Biochem Soc Trans; 2007 Nov; 35(Pt 5):1080-2. PubMed ID: 17956284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mapping of excitatory and inhibitory postsynaptic potentials of neuronal populations in hippocampal slices using the GEVI, ArcLight.
    Nakajima R; Baker BJ
    J Phys D Appl Phys; 2018 Dec; 51(50):. PubMed ID: 30739956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.