These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 26599814)

  • 21. Positive emotion modulates cognitive control: an event-related potentials study.
    Xue S; Cui J; Wang K; Zhang S; Qiu J; Luo Y
    Scand J Psychol; 2013 Apr; 54(2):82-8. PubMed ID: 23397988
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Negative emotional context enhances auditory novelty processing.
    Domínguez-Borràs J; Garcia-Garcia M; Escera C
    Neuroreport; 2008 Mar; 19(4):503-7. PubMed ID: 18287956
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Impact of orbitofrontal lesions on electrophysiological signals in a stop signal task.
    Solbakk AK; Funderud I; Løvstad M; Endestad T; Meling T; Lindgren M; Knight RT; Krämer UM
    J Cogn Neurosci; 2014 Jul; 26(7):1528-45. PubMed ID: 24392904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of varying stop-signal probability on ERPs in the stop-signal task: do they reflect variations in inhibitory processing or simply novelty effects?
    Dimoska A; Johnstone SJ
    Biol Psychol; 2008 Mar; 77(3):324-36. PubMed ID: 18096294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrophysiological evidence for the involvement of proactive and reactive control in a rewarded stop-signal task.
    Schevernels H; Bombeke K; Van der Borght L; Hopf JM; Krebs RM; Boehler CN
    Neuroimage; 2015 Nov; 121():115-25. PubMed ID: 26188262
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural aftereffects of errors in a stop-signal task.
    Beyer F; Münte TF; Fischer J; Krämer UM
    Neuropsychologia; 2012 Dec; 50(14):3304-12. PubMed ID: 23063968
    [TBL] [Abstract][Full Text] [Related]  

  • 27. N1 and N2 ERPs reflect the regulation of automatic approach tendencies to positive stimuli.
    Ernst LH; Ehlis AC; Dresler T; Tupak SV; Weidner A; Fallgatter AJ
    Neurosci Res; 2013 Mar; 75(3):239-49. PubMed ID: 23298530
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Emotional context modulates response inhibition: neural and behavioral data.
    Albert J; López-Martín S; Carretié L
    Neuroimage; 2010 Jan; 49(1):914-21. PubMed ID: 19716425
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Arousal modulates valence effects on both early and late stages of affective picture processing in a passive viewing task.
    Feng C; Li W; Tian T; Luo Y; Gu R; Zhou C; Luo YJ
    Soc Neurosci; 2014; 9(4):364-77. PubMed ID: 24601745
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The neural mechanism underlying the female advantage in identifying negative emotions: an event-related potential study.
    Li H; Yuan J; Lin C
    Neuroimage; 2008 May; 40(4):1921-9. PubMed ID: 18343686
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Early emotion word processing: evidence from event-related potentials.
    Scott GG; O'Donnell PJ; Leuthold H; Sereno SC
    Biol Psychol; 2009 Jan; 80(1):95-104. PubMed ID: 18440691
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition control and error processing in children with attention deficit/hyperactivity disorder: an event-related potentials study.
    Shen IH; Tsai SY; Duann JR
    Int J Psychophysiol; 2011 Jul; 81(1):1-11. PubMed ID: 21501634
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Brain dynamics of upstream perceptual processes leading to visual object recognition: a high density ERP topographic mapping study.
    Schettino A; Loeys T; Delplanque S; Pourtois G
    Neuroimage; 2011 Apr; 55(3):1227-41. PubMed ID: 21237274
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The impact of recent and concurrent affective context on cognitive control: An ERP study of performance monitoring.
    Clayson PE; Larson MJ
    Int J Psychophysiol; 2019 Sep; 143():44-56. PubMed ID: 31251955
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Electrophysiological correlates of emotional processing in sensation seeking.
    Zheng Y; Xu J; Jia H; Tan F; Chang Y; Zhou L; Shen H; Qu B
    Biol Psychol; 2011 Sep; 88(1):41-50. PubMed ID: 21726599
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrophysiological activity underlying inhibitory control processes in normal adults.
    Schmajuk M; Liotti M; Busse L; Woldorff MG
    Neuropsychologia; 2006; 44(3):384-95. PubMed ID: 16095637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuronal generator patterns at scalp elicited by lateralized aversive pictures reveal consecutive stages of motivated attention.
    Kayser J; Tenke CE; Abraham KS; Alschuler DM; Alvarenga JE; Skipper J; Warner V; Bruder GE; Weissman MM
    Neuroimage; 2016 Nov; 142():337-350. PubMed ID: 27263509
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Peripheral vision and preferential emotion processing.
    De Cesarei A; Codispoti M; Schupp HT
    Neuroreport; 2009 Oct; 20(16):1439-43. PubMed ID: 19779383
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Dynamics of response-conflict monitoring and individual differences in response control and behavioral control: an electrophysiological investigation using a stop-signal task.
    Stahl J; Gibbons H
    Clin Neurophysiol; 2007 Mar; 118(3):581-96. PubMed ID: 17188565
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Attentional bias to affective faces and complex IAPS images in early visual cortex follows emotional cue extraction.
    Bekhtereva V; Craddock M; Müller MM
    Neuroimage; 2015 May; 112():254-266. PubMed ID: 25818682
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.