These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
285 related articles for article (PubMed ID: 26599823)
21. Histotripsy beyond the intrinsic cavitation threshold using very short ultrasound pulses: microtripsy. Lin KW; Kim Y; Maxwell AD; Wang TY; Hall TL; Xu Z; Fowlkes JB; Cain CA IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):251-65. PubMed ID: 24474132 [TBL] [Abstract][Full Text] [Related]
22. Bubble Cloud Characteristics and Ablation Efficiency in Dual-Frequency Intrinsic Threshold Histotripsy. Edsall C; Huynh L; Hall T; Vlaisavljevich E ArXiv; 2023 Jul; ():. PubMed ID: 37461413 [TBL] [Abstract][Full Text] [Related]
23. Assessment of histotripsy-induced liquefaction with diagnostic ultrasound and magnetic resonance imaging in vitro and ex vivo. Anthony GJ; Bollen V; Hendley S; Antic T; Sammet S; Bader KB Phys Med Biol; 2019 May; 64(9):095023. PubMed ID: 30921780 [TBL] [Abstract][Full Text] [Related]
24. Nanoparticle-Mediated Histotripsy Using Dual-Frequency Pulsing Methods. Edsall C; Huynh L; Mustafa W; Hall TL; Durmaz YY; Vlaisavljevich E Ultrasound Med Biol; 2024 Aug; 50(8):1214-1223. PubMed ID: 38797630 [TBL] [Abstract][Full Text] [Related]
25. Bubble Cloud Behavior and Ablation Capacity for Histotripsy Generated from Intrinsic or Artificial Cavitation Nuclei. Edsall C; Khan ZM; Mancia L; Hall S; Mustafa W; Johnsen E; Klibanov AL; Durmaz YY; Vlaisavljevich E Ultrasound Med Biol; 2021 Mar; 47(3):620-639. PubMed ID: 33309443 [TBL] [Abstract][Full Text] [Related]
26. Effects of f-number on the histotripsy intrinsic threshold and cavitation bubble cloud behavior. Vlaisavljevich E; Gerhardson T; Hall T; Xu Z Phys Med Biol; 2017 Feb; 62(4):1269-1290. PubMed ID: 27995900 [TBL] [Abstract][Full Text] [Related]
27. Visualizing the Histotripsy Process: Bubble Cloud-Cancer Cell Interactions in a Tissue-Mimicking Environment. Vlaisavljevich E; Maxwell A; Mancia L; Johnsen E; Cain C; Xu Z Ultrasound Med Biol; 2016 Oct; 42(10):2466-77. PubMed ID: 27401956 [TBL] [Abstract][Full Text] [Related]
28. Post Hoc Analysis of Passive Cavitation Imaging for Classification of Histotripsy-Induced Liquefaction in Vitro. Bader KB; Haworth KJ; Maxwell AD; Holland CK IEEE Trans Med Imaging; 2018 Jan; 37(1):106-115. PubMed ID: 28783627 [TBL] [Abstract][Full Text] [Related]
29. Contrast-Enhanced Imaging of Histotripsy Bubble Clouds Using Chirp-Coded Excitation and Volterra Filtering. Trivedi VV; Wallach EL; Bader KB; Shekhar H IEEE Trans Ultrason Ferroelectr Freq Control; 2023 Sep; 70(9):989-998. PubMed ID: 37379172 [TBL] [Abstract][Full Text] [Related]
31. Effects of tissue stiffness, ultrasound frequency, and pressure on histotripsy-induced cavitation bubble behavior. Vlaisavljevich E; Lin KW; Warnez MT; Singh R; Mancia L; Putnam AJ; Johnsen E; Cain C; Xu Z Phys Med Biol; 2015 Mar; 60(6):2271-92. PubMed ID: 25715732 [TBL] [Abstract][Full Text] [Related]
32. Soft Tissue Aberration Correction for Histotripsy Using Acoustic Emissions From Cavitation Cloud Nucleation and Collapse. Yeats E; Lu N; Sukovich JR; Xu Z; Hall TL Ultrasound Med Biol; 2023 May; 49(5):1182-1193. PubMed ID: 36759271 [TBL] [Abstract][Full Text] [Related]
33. Removal of residual cavitation nuclei to enhance histotripsy fractionation of soft tissue. Duryea AP; Cain CA; Roberts WW; Hall TL IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Dec; 62(12):2068-78. PubMed ID: 26670848 [TBL] [Abstract][Full Text] [Related]
34. Effects of Droplet Composition on Nanodroplet-Mediated Histotripsy. Vlaisavljevich E; Aydin O; Durmaz YY; Lin KW; Fowlkes B; Xu Z; ElSayed ME Ultrasound Med Biol; 2016 Apr; 42(4):931-46. PubMed ID: 26774470 [TBL] [Abstract][Full Text] [Related]
35. Cavitation clouds created by shock scattering from bubbles during histotripsy. Maxwell AD; Wang TY; Cain CA; Fowlkes JB; Sapozhnikov OA; Bailey MR; Xu Z J Acoust Soc Am; 2011 Oct; 130(4):1888-98. PubMed ID: 21973343 [TBL] [Abstract][Full Text] [Related]
36. Dual-beam histotripsy: a low-frequency pump enabling a high-frequency probe for precise lesion formation. Lin KW; Duryea AP; Kim Y; Hall TL; Xu Z; Cain CA IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Feb; 61(2):325-40. PubMed ID: 24474138 [TBL] [Abstract][Full Text] [Related]
37. Precision control of lesions by high-intensity focused ultrasound cavitation-based histotripsy through varying pulse duration. Xu J; Bigelow TA; Nagaraju R IEEE Trans Ultrason Ferroelectr Freq Control; 2013 Jul; 60(7):1401-11. PubMed ID: 25004507 [TBL] [Abstract][Full Text] [Related]
38. Noninvasive thrombolysis using histotripsy beyond the intrinsic threshold (microtripsy). Zhang X; Owens GE; Gurm HS; Ding Y; Cain CA; Xu Z IEEE Trans Ultrason Ferroelectr Freq Control; 2015 Jul; 62(7):1342-55. PubMed ID: 26168180 [TBL] [Abstract][Full Text] [Related]
39. Spatial-temporal ultrasound imaging of residual cavitation bubbles around a fluid-tissue interface in histotripsy. Hu H; Xu S; Yuan Y; Liu R; Wang S; Wan M J Acoust Soc Am; 2015 May; 137(5):2563-72. PubMed ID: 25994689 [TBL] [Abstract][Full Text] [Related]
40. Effects of Ultrasound Frequency on Nanodroplet-Mediated Histotripsy. Vlaisavljevich E; Aydin O; Yuksel Durmaz Y; Lin KW; Fowlkes B; ElSayed M; Xu Z Ultrasound Med Biol; 2015 Aug; 41(8):2135-47. PubMed ID: 25959056 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]