These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 26600127)

  • 1. Red fluorescence in coral larvae is associated with a diapause-like state.
    Strader ME; Aglyamova GV; Matz MV
    Mol Ecol; 2016 Jan; 25(2):559-69. PubMed ID: 26600127
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Profiling gene expression responses of coral larvae (Acropora millepora) to elevated temperature and settlement inducers using a novel RNA-Seq procedure.
    Meyer E; Aglyamova GV; Matz MV
    Mol Ecol; 2011 Sep; 20(17):3599-616. PubMed ID: 21801258
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular characterization of larval development from fertilization to metamorphosis in a reef-building coral.
    Strader ME; Aglyamova GV; Matz MV
    BMC Genomics; 2018 Jan; 19(1):17. PubMed ID: 29301490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescence of coral larvae predicts their settlement response to crustose coralline algae and reflects stress.
    Kenkel CD; Traylor MR; Wiedenmann J; Salih A; Matz MV
    Proc Biol Sci; 2011 Sep; 278(1718):2691-7. PubMed ID: 21270034
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A coral reef refuge in the Red Sea.
    Fine M; Gildor H; Genin A
    Glob Chang Biol; 2013 Dec; 19(12):3640-7. PubMed ID: 23959950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Larval connectivity patterns of the North Indo-West Pacific coral reefs.
    Pata PR; Yñiguez AT
    PLoS One; 2019; 14(7):e0219913. PubMed ID: 31335893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. CORAL REEFS. Genomic determinants of coral heat tolerance across latitudes.
    Dixon GB; Davies SW; Aglyamova GA; Meyer E; Bay LK; Matz MV
    Science; 2015 Jun; 348(6242):1460-2. PubMed ID: 26113720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral.
    Matz MV; Treml EA; Aglyamova GV; Bay LK
    PLoS Genet; 2018 Apr; 14(4):e1007220. PubMed ID: 29672529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunity through early development of coral larvae.
    Palmer CV; Graham E; Baird AH
    Dev Comp Immunol; 2012 Oct; 38(2):395-9. PubMed ID: 22885633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. El Niño and coral larval dispersal across the eastern Pacific marine barrier.
    Wood S; Baums IB; Paris CB; Ridgwell A; Kessler WS; Hendy EJ
    Nat Commun; 2016 Aug; 7():12571. PubMed ID: 27550393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Symbiodinium identity alters the temperature-dependent settlement behaviour of Acropora millepora coral larvae before the onset of symbiosis.
    Winkler NS; Pandolfi JM; Sampayo EM
    Proc Biol Sci; 2015 Feb; 282(1801):20142260. PubMed ID: 25589607
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Survival dynamics of reef coral larvae with special consideration of larval size and the genus Acropora.
    Nozawa Y; Okubo N
    Biol Bull; 2011 Feb; 220(1):15-22. PubMed ID: 21385953
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Parental bleaching susceptibility leads to differences in larval fluorescence and dispersal potential in Pocillopora acuta corals.
    Puisay A; Elleaume N; Fouqueau L; Lacube Y; Goiran C; Sidobre C; Metian M; Hédouin L
    Mar Environ Res; 2021 Jan; 163():105200. PubMed ID: 33248410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sperm dispersal distances estimated by parentage analysis in a brooding scleractinian coral.
    Warner PA; Willis BL; van Oppen MJ
    Mol Ecol; 2016 Mar; 25(6):1398-415. PubMed ID: 26818771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Keeping It Local: Dispersal Limitations of Coral Larvae to the High Latitude Coral Reefs of the Houtman Abrolhos Islands.
    Markey KL; Abdo DA; Evans SN; Bosserelle C
    PLoS One; 2016; 11(1):e0147628. PubMed ID: 26812259
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions.
    Doropoulos C; Ward S; Diaz-Pulido G; Hoegh-Guldberg O; Mumby PJ
    Ecol Lett; 2012 Apr; 15(4):338-46. PubMed ID: 22321314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Life history changes in coral fluorescence and the effects of light intensity on larval physiology and settlement in Seriatopora hystrix.
    Roth MS; Fan TY; Deheyn DD
    PLoS One; 2013; 8(3):e59476. PubMed ID: 23544072
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transcriptomic Changes in Coral Holobionts Provide Insights into Physiological Challenges of Future Climate and Ocean Change.
    Kaniewska P; Chan CK; Kline D; Ling EY; Rosic N; Edwards D; Hoegh-Guldberg O; Dove S
    PLoS One; 2015; 10(10):e0139223. PubMed ID: 26510159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The biology of coral metamorphosis: molecular responses of larvae to inducers of settlement and metamorphosis.
    Grasso LC; Negri AP; Fôret S; Saint R; Hayward DC; Miller DJ; Ball EE
    Dev Biol; 2011 May; 353(2):411-9. PubMed ID: 21338599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differential responses of coral larvae to the colour of ambient light guide them to suitable settlement microhabitat.
    Strader ME; Davies SW; Matz MV
    R Soc Open Sci; 2015 Oct; 2(10):150358. PubMed ID: 26587247
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.