BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 26600432)

  • 1. Comparing gas separation performance between all known zeolites and their zeolitic imidazolate framework counterparts.
    Gómez-Álvarez P; Hamad S; Haranczyk M; Ruiz-Salvador AR; Calero S
    Dalton Trans; 2016 Jan; 45(1):216-25. PubMed ID: 26600432
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks.
    Phan A; Doonan CJ; Uribe-Romo FJ; Knobler CB; O'Keeffe M; Yaghi OM
    Acc Chem Res; 2010 Jan; 43(1):58-67. PubMed ID: 19877580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive framework for shape-selective separations in three-dimensional zeolites and metal-organic frameworks.
    First EL; Gounaris CE; Floudas CA
    Langmuir; 2013 May; 29(18):5599-608. PubMed ID: 23617929
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs.
    Wang B; Côté AP; Furukawa H; O'Keeffe M; Yaghi OM
    Nature; 2008 May; 453(7192):207-11. PubMed ID: 18464739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Zeolitic imidazolate frameworks: next-generation materials for energy-efficient gas separations.
    Pimentel BR; Parulkar A; Zhou EK; Brunelli NA; Lively RP
    ChemSusChem; 2014 Dec; 7(12):3202-40. PubMed ID: 25363474
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermal structural transitions and carbon dioxide adsorption properties of zeolitic imidazolate framework-7 (ZIF-7).
    Cai W; Lee T; Lee M; Cho W; Han DY; Choi N; Yip AC; Choi J
    J Am Chem Soc; 2014 Jun; 136(22):7961-71. PubMed ID: 24813064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zeolite A imidazolate frameworks.
    Hayashi H; Côté AP; Furukawa H; O'Keeffe M; Yaghi OM
    Nat Mater; 2007 Jul; 6(7):501-6. PubMed ID: 17529969
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the behavior of metal-organic frameworks and zeolites for hydrocarbon separations.
    Peralta D; Chaplais G; Simon-Masseron A; Barthelet K; Chizallet C; Quoineaud AA; Pirngruber GD
    J Am Chem Soc; 2012 May; 134(19):8115-26. PubMed ID: 22397705
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational Characterization of Defects in Metal-Organic Frameworks: Spontaneous and Water-Induced Point Defects in ZIF-8.
    Zhang C; Han C; Sholl DS; Schmidt JR
    J Phys Chem Lett; 2016 Feb; 7(3):459-64. PubMed ID: 26771275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular simulations of COFs, IRMOFs and ZIFs for adsorption-based separation of carbon tetrachloride from air.
    Gulcay E; Erucar I
    J Mol Graph Model; 2019 Jan; 86():84-94. PubMed ID: 30342419
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal-substituted zeolitic imidazolate framework ZIF-108: gas-sorption and membrane-separation properties.
    Ban Y; Li Y; Peng Y; Jin H; Jiao W; Liu X; Yang W
    Chemistry; 2014 Sep; 20(36):11402-9. PubMed ID: 25056685
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combined experimental and computational NMR study of crystalline and amorphous zeolitic imidazolate frameworks.
    Baxter EF; Bennett TD; Mellot-Draznieks C; Gervais C; Blanc F; Cheetham AK
    Phys Chem Chem Phys; 2015 Oct; 17(38):25191-6. PubMed ID: 26351979
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks.
    Khan NA; Jung BK; Hasan Z; Jhung SH
    J Hazard Mater; 2015 Jan; 282():194-200. PubMed ID: 24726184
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defining New Limits in Gas Separations Using Modified ZIF Systems.
    Krokidas P; Moncho S; Brothers EN; Economou IG
    ACS Appl Mater Interfaces; 2020 May; 12(18):20536-20547. PubMed ID: 32281364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional zeolitic-imidazolate-framework-templated porous carbon materials for CO2 capture and enhanced capacitors.
    Wang Q; Xia W; Guo W; An L; Xia D; Zou R
    Chem Asian J; 2013 Aug; 8(8):1879-85. PubMed ID: 23658109
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative molecular simulation study of CO2/N2 and CH4/N2 separation in zeolites and metal-organic frameworks.
    Liu B; Smit B
    Langmuir; 2009 May; 25(10):5918-26. PubMed ID: 19382791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective capture of carbon dioxide under humid conditions by hydrophobic chabazite-type zeolitic imidazolate frameworks.
    Nguyen NT; Furukawa H; Gándara F; Nguyen HT; Cordova KE; Yaghi OM
    Angew Chem Int Ed Engl; 2014 Sep; 53(40):10645-8. PubMed ID: 25044990
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystals as molecules: postsynthesis covalent functionalization of zeolitic imidazolate frameworks.
    Morris W; Doonan CJ; Furukawa H; Banerjee R; Yaghi OM
    J Am Chem Soc; 2008 Sep; 130(38):12626-7. PubMed ID: 18754585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico screening of metal-organic frameworks in separation applications.
    Krishna R; van Baten JM
    Phys Chem Chem Phys; 2011 Jun; 13(22):10593-616. PubMed ID: 21541371
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture.
    Banerjee R; Phan A; Wang B; Knobler C; Furukawa H; O'Keeffe M; Yaghi OM
    Science; 2008 Feb; 319(5865):939-43. PubMed ID: 18276887
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.