These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 26600988)

  • 1. Biocompatible silk step-index optical waveguides.
    Applegate MB; Perotto G; Kaplan DL; Omenetto FG
    Biomed Opt Express; 2015 Nov; 6(11):4221-7. PubMed ID: 26600988
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Natural Silk as a Photonics Component: a Study on Its Light Guiding and Nonlinear Optical Properties.
    Kujala S; Mannila A; Karvonen L; Kieu K; Sun Z
    Sci Rep; 2016 Mar; 6():22358. PubMed ID: 26926272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic Engineering of Spider Silk Fiber as Implantable Optical Waveguides for Low-Loss Light Guiding.
    Qiao X; Qian Z; Li J; Sun H; Han Y; Xia X; Zhou J; Wang C; Wang Y; Wang C
    ACS Appl Mater Interfaces; 2017 May; 9(17):14665-14676. PubMed ID: 28384406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Investigation of the Waveguiding Properties of Silk Fibroin from the Visible to Near-Infrared Spectrum.
    Prajzler V; Min K; Kim S; Nekvindova P
    Materials (Basel); 2018 Jan; 11(1):. PubMed ID: 29324711
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Light-Guiding Biomaterials for Biomedical Applications.
    Shabahang S; Kim S; Yun SH
    Adv Funct Mater; 2018 Jun; 28(24):. PubMed ID: 31435205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Silk-hydrogel Lenses for Light-emitting Diodes.
    Melikov R; Press DA; Kumar BG; Dogru IB; Sadeghi S; Chirea M; Yılgör İ; Nizamoglu S
    Sci Rep; 2017 Aug; 7(1):7258. PubMed ID: 28775265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatible and Implantable Optical Fibers and Waveguides for Biomedicine.
    Nazempour R; Zhang Q; Fu R; Sheng X
    Materials (Basel); 2018 Jul; 11(8):. PubMed ID: 30044416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Precision measurements of the optical attenuation profile along the propagation path in thin-film waveguides.
    Teng CC
    Appl Opt; 1993 Mar; 32(7):1051-4. PubMed ID: 20820230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biocompatible Optical Fibers Made of Regenerated Cellulose and Recombinant Cellulose-Binding Spider Silk.
    Reimer M; Mayer K; Van Opdenbosch D; Scheibel T; Zollfrank C
    Biomimetics (Basel); 2023 Jan; 8(1):. PubMed ID: 36648823
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct Inscription of on-surface waveguides in polymers using a mid-ir fiber laser.
    Bérubé JP; Frayssinous C; Lapointe J; Duval S; Fortin V; Vallée R
    Opt Express; 2019 Oct; 27(21):31013-31022. PubMed ID: 31684342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct ink writing 3D-printed optical waveguides for multi-layer interconnect.
    Lin C; Jia X; Chen C; Yang C; Li X; Shao M; Yu Y; Zhang Z
    Opt Express; 2023 Mar; 31(7):11913-11922. PubMed ID: 37155815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Printed Soft Optical Waveguides of PLA Copolymers for Guiding Light into Tissue.
    Feng J; Jiang Q; Rogin P; de Oliveira PW; Del Campo A
    ACS Appl Mater Interfaces; 2020 May; 12(18):20287-20294. PubMed ID: 32285657
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible thin-film polymer waveguides fabricated in an industrial roll-to-roll process.
    Bruck R; Muellner P; Kataeva N; Koeck A; Trassl S; Rinnerbauer V; Schmidegg K; Hainberger R
    Appl Opt; 2013 Jul; 52(19):4510-4. PubMed ID: 23842245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 213 nm laser written waveguides in Ge-doped planar silica without hydrogen loading.
    Gow PC; Ahmed QS; Mennea PL; Bannerman RHS; Jantzen A; Holmes C; Gates JC; Gawith CBE; Smith PGR
    Opt Express; 2020 Oct; 28(21):32165-32172. PubMed ID: 33115179
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tapered edge ridge waveguides for integrated optics.
    Ranganath TR; Tsang WT; Wang S
    Appl Opt; 1975 Aug; 14(8):1847-53. PubMed ID: 20154930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Application of silk fibroin scaffold in bone tissue engineering].
    Lu S; Zuo B; Liu H
    Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Oct; 28(10):1307-10. PubMed ID: 25591313
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femtosecond laser micromachining of waveguides in silicone-based hydrogel polymers.
    Ding L; Blackwell RI; Künzler JF; Knox WH
    Appl Opt; 2008 Jun; 47(17):3100-8. PubMed ID: 18545281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials.
    Vu T; Xue Y; Vuong T; Erbe M; Bennet C; Palazzo B; Popielski L; Rodriguez N; Hu X
    Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27618011
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple method of measuring propagation properties of integrated optical waveguides: an improvement.
    Okamura Y; Sato S; Yamamoto S
    Appl Opt; 1985 Jan; 24(1):57-60. PubMed ID: 18216904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of channel waveguides from sol-gel-processed polyvinylpyrrolidone/ SiO(2) composite materials.
    Yoshida M; Prasad PN
    Appl Opt; 1996 Mar; 35(9):1500-6. PubMed ID: 21085265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.