These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 26601000)

  • 1. Non-invasive manipulation of Drosophila behavior by two-photon excited red-activatable channelrhodopsin.
    Hsiao PY; Tsai CL; Chen MC; Lin YY; Yang SD; Chiang AS
    Biomed Opt Express; 2015 Nov; 6(11):4344-52. PubMed ID: 26601000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation.
    Lin JY; Knutsen PM; Muller A; Kleinfeld D; Tsien RY
    Nat Neurosci; 2013 Oct; 16(10):1499-508. PubMed ID: 23995068
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enzymatic vitamin A
    Gerhards J; Volkov LI; Corbo JC; Malan D; Sasse P
    Pflugers Arch; 2023 Dec; 475(12):1409-1419. PubMed ID: 37987804
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wireless Optogenetic Modulation of Cortical Neurons Enabled by Radioluminescent Nanoparticles.
    Chen Z; Tsytsarev V; Finfrock YZ; Antipova OA; Cai Z; Arakawa H; Lischka FW; Hooks BM; Wilton R; Wang D; Liu Y; Gaitan B; Tao Y; Chen Y; Erzurumlu RS; Yang H; Rozhkova EA
    ACS Nano; 2021 Mar; 15(3):5201-5208. PubMed ID: 33625219
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Developing Drosophila melanogaster Models for Imaging and Optogenetic Control of Cardiac Function.
    Gracheva E; Wang F; Matt A; Liang H; Fishman M; Zhou C
    J Vis Exp; 2022 Aug; (186):. PubMed ID: 36094265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive red-light optogenetic control of Drosophila cardiac function.
    Men J; Li A; Jerwick J; Li Z; Tanzi RE; Zhou C
    Commun Biol; 2020 Jun; 3(1):336. PubMed ID: 32601302
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optogenetic control of Drosophila using a red-shifted channelrhodopsin reveals experience-dependent influences on courtship.
    Inagaki HK; Jung Y; Hoopfer ED; Wong AM; Mishra N; Lin JY; Tsien RY; Anderson DJ
    Nat Methods; 2014 Mar; 11(3):325-32. PubMed ID: 24363022
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Painting with Rainbows: Patterning Light in Space, Time, and Wavelength for Multiphoton Optogenetic Sensing and Control.
    Brinks D; Adam Y; Kheifets S; Cohen AE
    Acc Chem Res; 2016 Nov; 49(11):2518-2526. PubMed ID: 27786461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Investigation of Seizure-Susceptibility in a
    Saras A; Wu VV; Brawer HJ; Tanouye MA
    Genetics; 2017 Aug; 206(4):1739-1746. PubMed ID: 28630111
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-color multiphoton
    Perillo EP; Jarrett JW; Liu YL; Hassan A; Fernée DC; Goldak JR; Bonteanu A; Spence DJ; Yeh HC; Dunn AK
    Light Sci Appl; 2017; 6(11):e17095-. PubMed ID: 29576887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-Photon Holographic Stimulation of ReaChR.
    Chaigneau E; Ronzitti E; Gajowa MA; Soler-Llavina GJ; Tanese D; Brureau AY; Papagiakoumou E; Zeng H; Emiliani V
    Front Cell Neurosci; 2016; 10():234. PubMed ID: 27803649
    [TBL] [Abstract][Full Text] [Related]  

  • 12.
    Miller DR; Hassan AM; Jarrett JW; Medina FA; Perillo EP; Hagan K; Shams Kazmi SM; Clark TA; Sullender CT; Jones TA; Zemelman BV; Dunn AK
    Biomed Opt Express; 2017 Jul; 8(7):3470-3481. PubMed ID: 28717582
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optogenetic Manipulation of Selective Neural Activity in Free-Moving Drosophila Adults.
    Hsiao PY; Wu MC; Lin YY; Fu CC; Chiang AS
    Methods Mol Biol; 2016; 1408():377-87. PubMed ID: 26965137
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of the emission wavelengths on
    Wang M; Kim M; Xia F; Xu C
    Biomed Opt Express; 2019 Apr; 10(4):1905-1918. PubMed ID: 31061766
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances and current limitations of available technology to optically manipulate and observe cardiac electrophysiology.
    Marchal GA; Biasci V; Yan P; Palandri C; Campione M; Cerbai E; Loew LM; Sacconi L
    Pflugers Arch; 2023 Nov; 475(11):1357-1366. PubMed ID: 37770585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Two-color temporal focusing multiphoton excitation imaging with tunable-wavelength excitation.
    Lien CH; Abrigo G; Chen PH; Chien FC
    J Biomed Opt; 2017 Feb; 22(2):26008. PubMed ID: 28241274
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extension of imaging depth in two-photon fluorescence microscopy using a long-wavelength high-pulse-energy femtosecond laser source.
    Wang C; Qiao L; He F; Cheng Y; Xu Z
    J Microsc; 2011 Aug; 243(2):179-83. PubMed ID: 21388374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-photon microscopy with wavelength switchable fiber laser excitation.
    Unruh JR; Price ES; Molla RG; Stehno-Bittel L; Johnson CK; Hui R
    Opt Express; 2006 Oct; 14(21):9825-31. PubMed ID: 19529374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wide-field three-photon excitation in biological samples.
    Rowlands CJ; Park D; Bruns OT; Piatkevich KD; Fukumura D; Jain RK; Bawendi MG; Boyden ES; So PT
    Light Sci Appl; 2017 May; 6(5):e16255. PubMed ID: 29152380
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.