These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 26601103)
1. Systematic Analysis and Prediction of In Situ Cross Talk of O-GlcNAcylation and Phosphorylation. Yao H; Li A; Wang M Biomed Res Int; 2015; 2015():279823. PubMed ID: 26601103 [TBL] [Abstract][Full Text] [Related]
2. Elucidating crosstalk mechanisms between phosphorylation and O-GlcNAcylation. Leney AC; El Atmioui D; Wu W; Ovaa H; Heck AJR Proc Natl Acad Sci U S A; 2017 Aug; 114(35):E7255-E7261. PubMed ID: 28808029 [TBL] [Abstract][Full Text] [Related]
3. Crosstalk between phosphorylation and O-GlcNAcylation: friend or foe. van der Laarse SAM; Leney AC; Heck AJR FEBS J; 2018 Sep; 285(17):3152-3167. PubMed ID: 29717537 [TBL] [Abstract][Full Text] [Related]
4. PGlcS: Prediction of protein O-GlcNAcylation sites with multiple features and analysis. Zhao X; Ning Q; Chai H; Ai M; Ma Z J Theor Biol; 2015 Sep; 380():524-9. PubMed ID: 26116363 [TBL] [Abstract][Full Text] [Related]
5. Identification of enriched PTM crosstalk motifs from large-scale experimental data sets. Peng M; Scholten A; Heck AJ; van Breukelen B J Proteome Res; 2014 Jan; 13(1):249-59. PubMed ID: 24087892 [TBL] [Abstract][Full Text] [Related]
6. Phosphorylation versus O-GlcNAcylation: Computational Insights into the Differential Influences of the Two Competitive Post-Translational Modifications. Rani L; Mallajosyula SS J Phys Chem B; 2017 Nov; 121(47):10618-10638. PubMed ID: 29077417 [TBL] [Abstract][Full Text] [Related]
7. Systematic analysis of the in situ crosstalk of tyrosine modifications reveals no additional natural selection on multiply modified residues. Pan Z; Liu Z; Cheng H; Wang Y; Gao T; Ullah S; Ren J; Xue Y Sci Rep; 2014 Dec; 4():7331. PubMed ID: 25476580 [TBL] [Abstract][Full Text] [Related]
8. Systematic characterization and prediction of post-translational modification cross-talk. Huang Y; Xu B; Zhou X; Li Y; Lu M; Jiang R; Li T Mol Cell Proteomics; 2015 Mar; 14(3):761-70. PubMed ID: 25605461 [TBL] [Abstract][Full Text] [Related]
9. A novel method for predicting post-translational modifications on serine and threonine sites by using site-modification network profiles. Wang M; Jiang Y; Xu X Mol Biosyst; 2015 Nov; 11(11):3092-100. PubMed ID: 26344496 [TBL] [Abstract][Full Text] [Related]
10. Alteration of O-GlcNAcylation affects serine phosphorylation and regulates gene expression and activity of pyruvate kinase M2 in colorectal cancer cells. Chaiyawat P; Chokchaichamnankit D; Lirdprapamongkol K; Srisomsap C; Svasti J; Champattanachai V Oncol Rep; 2015 Oct; 34(4):1933-42. PubMed ID: 26252736 [TBL] [Abstract][Full Text] [Related]
11. A novel post-translational modification in nerve terminals: O-linked N-acetylglucosamine phosphorylation. Graham ME; Thaysen-Andersen M; Bache N; Craft GE; Larsen MR; Packer NH; Robinson PJ J Proteome Res; 2011 Jun; 10(6):2725-33. PubMed ID: 21500857 [TBL] [Abstract][Full Text] [Related]
12. O-GlcNAcPRED: a sensitive predictor to capture protein O-GlcNAcylation sites. Jia CZ; Liu T; Wang ZP Mol Biosyst; 2013 Nov; 9(11):2909-13. PubMed ID: 24056994 [TBL] [Abstract][Full Text] [Related]
13. O-GlcNAc modification in diabetes and Alzheimer's disease. Dias WB; Hart GW Mol Biosyst; 2007 Nov; 3(11):766-72. PubMed ID: 17940659 [TBL] [Abstract][Full Text] [Related]
14. mUSP: a high-accuracy map of the in situ crosstalk of ubiquitylation and SUMOylation proteome predicted via the feature enhancement approach. Xu HD; Liang RP; Wang YG; Qiu JD Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32382739 [TBL] [Abstract][Full Text] [Related]
15. Systematic characterization and prediction of post-translational modification cross-talk between proteins. Huang R; Huang Y; Guo Y; Ji S; Lu M; Li T Bioinformatics; 2019 Aug; 35(15):2626-2633. PubMed ID: 30590394 [TBL] [Abstract][Full Text] [Related]
16. Enhanced O-GlcNAc protein modification is associated with insulin resistance in GLUT1-overexpressing muscles. Buse MG; Robinson KA; Marshall BA; Hresko RC; Mueckler MM Am J Physiol Endocrinol Metab; 2002 Aug; 283(2):E241-50. PubMed ID: 12110528 [TBL] [Abstract][Full Text] [Related]
17. Prediction of posttranslational modification sites from amino acid sequences with kernel methods. Xu Y; Wang X; Wang Y; Tian Y; Shao X; Wu LY; Deng N J Theor Biol; 2014 Mar; 344():78-87. PubMed ID: 24291233 [TBL] [Abstract][Full Text] [Related]
18. VPTMdb: a viral posttranslational modification database. Xiang Y; Zou Q; Zhao L Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33094321 [TBL] [Abstract][Full Text] [Related]
19. Multiple reaction monitoring mass spectrometry for the discovery and quantification of O-GlcNAc-modified proteins. Maury JJ; Ng D; Bi X; Bardor M; Choo AB Anal Chem; 2014 Jan; 86(1):395-402. PubMed ID: 24144119 [TBL] [Abstract][Full Text] [Related]
20. Site-specific interplay between O-GlcNAcylation and phosphorylation in cellular regulation. Hu P; Shimoji S; Hart GW FEBS Lett; 2010 Jun; 584(12):2526-38. PubMed ID: 20417205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]