These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26601103)

  • 21. Altered O-GlcNAc modification and phosphorylation of mitochondrial proteins in myoblast cells exposed to high glucose.
    Gu Y; Ande SR; Mishra S
    Arch Biochem Biophys; 2011 Jan; 505(1):98-104. PubMed ID: 20887712
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The next level of complexity: crosstalk of posttranslational modifications.
    Venne AS; Kollipara L; Zahedi RP
    Proteomics; 2014 Mar; 14(4-5):513-24. PubMed ID: 24339426
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inhibition of phospholamban phosphorylation by O-GlcNAcylation: implications for diabetic cardiomyopathy.
    Yokoe S; Asahi M; Takeda T; Otsu K; Taniguchi N; Miyoshi E; Suzuki K
    Glycobiology; 2010 Oct; 20(10):1217-26. PubMed ID: 20484118
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A peptide panel investigation reveals the acceptor specificity of O-GlcNAc transferase.
    Liu X; Li L; Wang Y; Yan H; Ma X; Wang PG; Zhang L
    FASEB J; 2014 Aug; 28(8):3362-72. PubMed ID: 24760753
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of O-GlcNAc sites on proteins.
    Whelan SA; Hart GW
    Methods Enzymol; 2006; 415():113-33. PubMed ID: 17116471
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Proteomic analysis and abrogated expression of O-GlcNAcylated proteins associated with primary breast cancer.
    Champattanachai V; Netsirisawan P; Chaiyawat P; Phueaouan T; Charoenwattanasatien R; Chokchaichamnankit D; Punyarit P; Srisomsap C; Svasti J
    Proteomics; 2013 Jul; 13(14):2088-99. PubMed ID: 23576270
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of protein kinase-specific phosphorylation sites in hierarchical structure using functional information and random forest.
    Fan W; Xu X; Shen Y; Feng H; Li A; Wang M
    Amino Acids; 2014 Apr; 46(4):1069-78. PubMed ID: 24452754
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Direct evidence of O-GlcNAcylation in the apicomplexan Toxoplasma gondii: a biochemical and bioinformatic study.
    Perez-Cervera Y; Harichaux G; Schmidt J; Debierre-Grockiego F; Dehennaut V; Bieker U; Meurice E; Lefebvre T; Schwarz RT
    Amino Acids; 2011 Mar; 40(3):847-56. PubMed ID: 20661758
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In silico assessment of phosphorylation and O-β-GlcNAcylation sites in human NPC1 protein critical for Ebola virus entry.
    Basharat Z; Yasmin A
    Infect Genet Evol; 2015 Aug; 34():326-38. PubMed ID: 26048414
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular mechanisms of O-GlcNAcylation.
    Hurtado-Guerrero R; Dorfmueller HC; van Aalten DM
    Curr Opin Struct Biol; 2008 Oct; 18(5):551-7. PubMed ID: 18822376
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PPICT: an integrated deep neural network for predicting inter-protein PTM cross-talk.
    Zhu F; Deng L; Dai Y; Zhang G; Meng F; Luo C; Hu G; Liang Z
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36781207
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Protein O-GlcNAcylation and regulation of cell signalling: involvement in pathophysiology].
    Issad T; Pagesy P
    Biol Aujourdhui; 2014; 208(2):109-17. PubMed ID: 25190571
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification and characterization of lysine-methylated sites on histones and non-histone proteins.
    Lee TY; Chang CW; Lu CT; Cheng TH; Chang TH
    Comput Biol Chem; 2014 Jun; 50():11-8. PubMed ID: 24560580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Alternative O-GlcNAcylation/O-phosphorylation of Ser16 induce different conformational disturbances to the N terminus of murine estrogen receptor beta.
    Chen YX; Du JT; Zhou LX; Liu XH; Zhao YF; Nakanishi H; Li YM
    Chem Biol; 2006 Sep; 13(9):937-44. PubMed ID: 16984883
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Protein structure as a means to triage proposed PTM sites.
    Vandermarliere E; Martens L
    Proteomics; 2013 Mar; 13(6):1028-35. PubMed ID: 23172737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary constraint and disease associations of post-translational modification sites in human genomes.
    Reimand J; Wagih O; Bader GD
    PLoS Genet; 2015 Jan; 11(1):e1004919. PubMed ID: 25611800
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Co-occurring protein phosphorylation are functionally associated.
    Li Y; Zhou X; Zhai Z; Li T
    PLoS Comput Biol; 2017 May; 13(5):e1005502. PubMed ID: 28459814
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristic increase in nucleocytoplasmic protein glycosylation by O-GlcNAc in 3T3-L1 adipocyte differentiation.
    Ishihara K; Takahashi I; Tsuchiya Y; Hasegawa M; Kamemura K
    Biochem Biophys Res Commun; 2010 Jul; 398(3):489-94. PubMed ID: 20599697
    [TBL] [Abstract][Full Text] [Related]  

  • 39. PTM-X: Prediction of Post-Translational Modification Crosstalk Within and Across Proteins.
    Li Y; Huang Y; Li T
    Methods Mol Biol; 2022; 2499():275-283. PubMed ID: 35696086
    [TBL] [Abstract][Full Text] [Related]  

  • 40. DF-Phos: Prediction of Protein Phosphorylation Sites by Deep Forest.
    Zahiri Z; Mehrshad N; Mehrshad M
    J Biochem; 2024 Mar; 175(4):447-456. PubMed ID: 38153271
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.