These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 26601103)

  • 41. EdeepSADPr: an extensive deep-learning architecture for prediction of the
    Jiang H; Shang S; Sha Y; Zhang L; He N; Li L
    Front Cell Dev Biol; 2023; 11():1149535. PubMed ID: 37187615
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genome-wide evolutionary conservation of N-glycosylation sites.
    Park C; Zhang J
    Mol Biol Evol; 2011 Aug; 28(8):2351-7. PubMed ID: 21355035
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Large-scale analysis of the evolutionary histories of phosphorylation motifs in the human genome.
    Yoshizaki H; Okuda S
    Gigascience; 2015; 4():21. PubMed ID: 25949811
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Structure-based prediction of post-translational modification cross-talk within proteins using complementary residue- and residue pair-based features.
    Liu HF; Liu R
    Brief Bioinform; 2020 Mar; 21(2):609-620. PubMed ID: 30649184
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Rampant purifying selection conserves positions with posttranslational modifications in human proteins.
    Gray VE; Kumar S
    Mol Biol Evol; 2011 May; 28(5):1565-8. PubMed ID: 21273632
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Integrative annotation and knowledge discovery of kinase post-translational modifications and cancer-associated mutations through federated protein ontologies and resources.
    Huang LC; Ross KE; Baffi TR; Drabkin H; Kochut KJ; Ruan Z; D'Eustachio P; McSkimming D; Arighi C; Chen C; Natale DA; Smith C; Gaudet P; Newton AC; Wu C; Kannan N
    Sci Rep; 2018 Apr; 8(1):6518. PubMed ID: 29695735
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Functional divergence and evolutionary turnover in mammalian phosphoproteomes.
    Freschi L; Osseni M; Landry CR
    PLoS Genet; 2014 Jan; 10(1):e1004062. PubMed ID: 24465218
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Prediction of functional phosphorylation sites by incorporating evolutionary information.
    Niu S; Wang Z; Ge D; Zhang G; Li Y
    Protein Cell; 2012 Sep; 3(9):675-90. PubMed ID: 22802047
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Prioritizing functional phosphorylation sites based on multiple feature integration.
    Xiao Q; Miao B; Bi J; Wang Z; Li Y
    Sci Rep; 2016 Apr; 6():24735. PubMed ID: 27090940
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Assessing predictors for new post translational modification sites: A case study on hydroxylation.
    Piovesan D; Hatos A; Minervini G; Quaglia F; Monzon AM; Tosatto SCE
    PLoS Comput Biol; 2020 Jun; 16(6):e1007967. PubMed ID: 32569263
    [TBL] [Abstract][Full Text] [Related]  

  • 51. O-GlcNAcylation enhances the invasion of thyroid anaplastic cancer cells partially by PI3K/Akt1 pathway.
    Zhang P; Wang C; Ma T; You S
    Onco Targets Ther; 2015; 8():3305-13. PubMed ID: 26635480
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A two-layered machine learning method to identify protein O-GlcNAcylation sites with O-GlcNAc transferase substrate motifs.
    Kao HJ; Huang CH; Bretaña NA; Lu CT; Huang KY; Weng SL; Lee TY
    BMC Bioinformatics; 2015; 16 Suppl 18(Suppl 18):S10. PubMed ID: 26680539
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Discovery of a nucleocytoplasmic O-mannose glycoproteome in yeast.
    Halim A; Larsen IS; Neubert P; Joshi HJ; Petersen BL; Vakhrushev SY; Strahl S; Clausen H
    Proc Natl Acad Sci U S A; 2015 Dec; 112(51):15648-53. PubMed ID: 26644575
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dual functionality of O-GlcNAc transferase is required for Drosophila development.
    Mariappa D; Zheng X; Schimpl M; Raimi O; Ferenbach AT; Müller HA; van Aalten DM
    Open Biol; 2015 Dec; 5(12):150234. PubMed ID: 26674417
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Disruption of O-linked N-Acetylglucosamine Signaling Induces ER Stress and β Cell Failure.
    Alejandro EU; Bozadjieva N; Kumusoglu D; Abdulhamid S; Levine H; Haataja L; Vadrevu S; Satin LS; Arvan P; Bernal-Mizrachi E
    Cell Rep; 2015 Dec; 13(11):2527-2538. PubMed ID: 26673325
    [TBL] [Abstract][Full Text] [Related]  

  • 56. O-linked β-N-acetylglucosamine modification of proteins is activated in post-ischemic brains of young but not aged mice: Implications for impaired functional recovery from ischemic stress.
    Liu S; Sheng H; Yu Z; Paschen W; Yang W
    J Cereb Blood Flow Metab; 2016 Feb; 36(2):393-8. PubMed ID: 26661187
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Covalent perturbation as a tool for validation of identifications and PTM mapping applied to bovine alpha-crystallin.
    Bunkenborg J; Falkenby LG; Harder LM; Molina H
    Proteomics; 2016 Feb; 16(4):545-53. PubMed ID: 26644245
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mixed Lineage Leukemia 5 (MLL5) Protein Stability Is Cooperatively Regulated by O-GlcNac Transferase (OGT) and Ubiquitin Specific Protease 7 (USP7).
    Ding X; Jiang W; Zhou P; Liu L; Wan X; Yuan X; Wang X; Chen M; Chen J; Yang J; Kong C; Li B; Peng C; Wong CC; Hou F; Zhang Y
    PLoS One; 2015; 10(12):e0145023. PubMed ID: 26678539
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Senescence-Associated Changes in Proteome and O-GlcNAcylation Pattern in Human Peritoneal Mesothelial Cells.
    Herzog R; Tarantino S; Rudolf A; Aufricht C; Kratochwill K; Witowski J
    Biomed Res Int; 2015; 2015():382652. PubMed ID: 26640786
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Inhibition of HIF-1α Affects Autophagy Mediated Glycosylation in Oral Squamous Cell Carcinoma Cells.
    Li YN; Hu JA; Wang HM
    Dis Markers; 2015; 2015():239479. PubMed ID: 26640316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.