These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
130 related articles for article (PubMed ID: 26601103)
61. Regulation of protein O-GlcNAcylation by circadian, metabolic, and cellular signals. Liu X; Cai YD; Chiu JC J Biol Chem; 2024 Feb; 300(2):105616. PubMed ID: 38159854 [TBL] [Abstract][Full Text] [Related]
62. Nutrient-sensitive protein O-GlcNAcylation shapes daily biological rhythms. Liu X; Chiu JC Open Biol; 2022 Sep; 12(9):220215. PubMed ID: 36099933 [TBL] [Abstract][Full Text] [Related]
63. Counterion Optimization Dramatically Improves Selectivity for Phosphopeptides and Glycopeptides in Electrostatic Repulsion-Hydrophilic Interaction Chromatography. Cui Y; Tabang DN; Zhang Z; Ma M; Alpert AJ; Li L Anal Chem; 2021 Jun; 93(22):7908-7916. PubMed ID: 34042420 [TBL] [Abstract][Full Text] [Related]
64. PTM-ssMP: A Web Server for Predicting Different Types of Post-translational Modification Sites Using Novel Site-specific Modification Profile. Liu Y; Wang M; Xi J; Luo F; Li A Int J Biol Sci; 2018; 14(8):946-956. PubMed ID: 29989096 [TBL] [Abstract][Full Text] [Related]
65. Methionine residues around phosphorylation sites are preferentially oxidized in vivo under stress conditions. Veredas FJ; Cantón FR; Aledo JC Sci Rep; 2017 Jan; 7():40403. PubMed ID: 28079140 [TBL] [Abstract][Full Text] [Related]
66. Regulation and role of post-translational modifications of enhancer of zeste homologue 2 in cancer development. Lu H; Li G; Zhou C; Jin W; Qian X; Wang Z; Pan H; Jin H; Wang X Am J Cancer Res; 2016; 6(12):2737-2754. PubMed ID: 28042497 [TBL] [Abstract][Full Text] [Related]
67. Systematic Analysis and Prediction of In Situ Cross Talk of O-GlcNAcylation and Phosphorylation. Yao H; Li A; Wang M Biomed Res Int; 2015; 2015():279823. PubMed ID: 26601103 [TBL] [Abstract][Full Text] [Related]
68. Elucidating crosstalk mechanisms between phosphorylation and O-GlcNAcylation. Leney AC; El Atmioui D; Wu W; Ovaa H; Heck AJR Proc Natl Acad Sci U S A; 2017 Aug; 114(35):E7255-E7261. PubMed ID: 28808029 [TBL] [Abstract][Full Text] [Related]
69. Crosstalk between phosphorylation and O-GlcNAcylation: friend or foe. van der Laarse SAM; Leney AC; Heck AJR FEBS J; 2018 Sep; 285(17):3152-3167. PubMed ID: 29717537 [TBL] [Abstract][Full Text] [Related]
70. PGlcS: Prediction of protein O-GlcNAcylation sites with multiple features and analysis. Zhao X; Ning Q; Chai H; Ai M; Ma Z J Theor Biol; 2015 Sep; 380():524-9. PubMed ID: 26116363 [TBL] [Abstract][Full Text] [Related]
71. Identification of enriched PTM crosstalk motifs from large-scale experimental data sets. Peng M; Scholten A; Heck AJ; van Breukelen B J Proteome Res; 2014 Jan; 13(1):249-59. PubMed ID: 24087892 [TBL] [Abstract][Full Text] [Related]
72. Systematic characterization and prediction of post-translational modification cross-talk. Huang Y; Xu B; Zhou X; Li Y; Lu M; Jiang R; Li T Mol Cell Proteomics; 2015 Mar; 14(3):761-70. PubMed ID: 25605461 [TBL] [Abstract][Full Text] [Related]
74. Systematic analysis of the in situ crosstalk of tyrosine modifications reveals no additional natural selection on multiply modified residues. Pan Z; Liu Z; Cheng H; Wang Y; Gao T; Ullah S; Ren J; Xue Y Sci Rep; 2014 Dec; 4():7331. PubMed ID: 25476580 [TBL] [Abstract][Full Text] [Related]
75. UniProt: a hub for protein information. UniProt Consortium Nucleic Acids Res; 2015 Jan; 43(Database issue):D204-12. PubMed ID: 25348405 [TBL] [Abstract][Full Text] [Related]