BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 26601145)

  • 1. Observation of the simplest Criegee intermediate CH2OO in the gas-phase ozonolysis of ethylene.
    Womack CC; Martin-Drumel MA; Brown GG; Field RW; McCarthy MC
    Sci Adv; 2015 Mar; 1(2):e1400105. PubMed ID: 26601145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct observation of the gas-phase Criegee intermediate (CH2OO).
    Taatjes CA; Meloni G; Selby TM; Trevitt AJ; Osborn DL; Percival CJ; Shallcross DE
    J Am Chem Soc; 2008 Sep; 130(36):11883-5. PubMed ID: 18702490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A kinetic study of the CH2OO Criegee intermediate self-reaction, reaction with SO2 and unimolecular reaction using cavity ring-down spectroscopy.
    Chhantyal-Pun R; Davey A; Shallcross DE; Percival CJ; Orr-Ewing AJ
    Phys Chem Chem Phys; 2015 Feb; 17(5):3617-26. PubMed ID: 25553776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Perspective: Spectroscopy and kinetics of small gaseous Criegee intermediates.
    Lee YP
    J Chem Phys; 2015 Jul; 143(2):020901. PubMed ID: 26178082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Probing of Criegee Intermediates from Gas-Phase Ozonolysis Using Chemical Ionization Mass Spectrometry.
    Berndt T; Herrmann H; Kurtén T
    J Am Chem Soc; 2017 Sep; 139(38):13387-13392. PubMed ID: 28853879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared detection of Criegee intermediates formed during the ozonolysis of β-pinene and their reactivity towards sulfur dioxide.
    Ahrens J; Carlsson PT; Hertl N; Olzmann M; Pfeifle M; Wolf JL; Zeuch T
    Angew Chem Int Ed Engl; 2014 Jan; 53(3):715-9. PubMed ID: 24402798
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene.
    Nguyen TB; Tyndall GS; Crounse JD; Teng AP; Bates KH; Schwantes RH; Coggon MM; Zhang L; Feiner P; Milller DO; Skog KM; Rivera-Rios JC; Dorris M; Olson KF; Koss A; Wild RJ; Brown SS; Goldstein AH; de Gouw JA; Brune WH; Keutsch FN; Seinfeld JH; Wennberg PO
    Phys Chem Chem Phys; 2016 Apr; 18(15):10241-54. PubMed ID: 27021601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct kinetic measurements of reactions between the simplest Criegee intermediate CH2OO and alkenes.
    Buras ZJ; Elsamra RM; Jalan A; Middaugh JE; Green WH
    J Phys Chem A; 2014 Mar; 118(11):1997-2006. PubMed ID: 24559303
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone.
    Taatjes CA; Welz O; Eskola AJ; Savee JD; Osborn DL; Lee EP; Dyke JM; Mok DW; Shallcross DE; Percival CJ
    Phys Chem Chem Phys; 2012 Aug; 14(30):10391-400. PubMed ID: 22481381
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes.
    Lester MI; Klippenstein SJ
    Acc Chem Res; 2018 Apr; 51(4):978-985. PubMed ID: 29613756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oligomerization reaction of the Criegee intermediate leads to secondary organic aerosol formation in ethylene ozonolysis.
    Sakamoto Y; Inomata S; Hirokawa J
    J Phys Chem A; 2013 Dec; 117(48):12912-21. PubMed ID: 24200348
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Determination of the Simplest Criegee Intermediate (CH2OO) Self Reaction Rate.
    Buras ZJ; Elsamra RM; Green WH
    J Phys Chem Lett; 2014 Jul; 5(13):2224-8. PubMed ID: 26279538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Kinetics of the unimolecular reaction of CH2OO and the bimolecular reactions with the water monomer, acetaldehyde and acetone under atmospheric conditions.
    Berndt T; Kaethner R; Voigtländer J; Stratmann F; Pfeifle M; Reichle P; Sipilä M; Kulmala M; Olzmann M
    Phys Chem Chem Phys; 2015 Aug; 17(30):19862-73. PubMed ID: 26159709
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Atmospheric Chemistry of Criegee Intermediates: Unimolecular Reactions and Reactions with Water.
    Long B; Bao JL; Truhlar DG
    J Am Chem Soc; 2016 Nov; 138(43):14409-14422. PubMed ID: 27682870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2.
    Huang HL; Chao W; Lin JJ
    Proc Natl Acad Sci U S A; 2015 Sep; 112(35):10857-62. PubMed ID: 26283390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stabilization of the Simplest Criegee Intermediate from the Reaction between Ozone and Ethylene: A High-Level Quantum Chemical and Kinetic Analysis of Ozonolysis.
    Nguyen TL; Lee H; Matthews DA; McCarthy MC; Stanton JF
    J Phys Chem A; 2015 Jun; 119(22):5524-33. PubMed ID: 25945650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probing Criegee intermediate reactions with methanol by FTMW spectroscopy.
    Cabezas C; Endo Y
    Phys Chem Chem Phys; 2020 Jun; 22(24):13756-13763. PubMed ID: 32538397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Criegee intermediate-formic acid reaction explored by rotational spectroscopy.
    Cabezas C; Endo Y
    Phys Chem Chem Phys; 2019 Aug; 21(33):18059-18064. PubMed ID: 31378795
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure-dependent reactivity of Criegee intermediates studied with spectroscopic methods.
    Jr-Min Lin J; Chao W
    Chem Soc Rev; 2017 Dec; 46(24):7483-7497. PubMed ID: 28840926
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reactivity and internal dynamics in the Criegee intermediate CH
    Cabezas C; Daly AM; Endo Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 260():119945. PubMed ID: 34020382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.