These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 26601145)
1. Observation of the simplest Criegee intermediate CH2OO in the gas-phase ozonolysis of ethylene. Womack CC; Martin-Drumel MA; Brown GG; Field RW; McCarthy MC Sci Adv; 2015 Mar; 1(2):e1400105. PubMed ID: 26601145 [TBL] [Abstract][Full Text] [Related]
2. Direct observation of the gas-phase Criegee intermediate (CH2OO). Taatjes CA; Meloni G; Selby TM; Trevitt AJ; Osborn DL; Percival CJ; Shallcross DE J Am Chem Soc; 2008 Sep; 130(36):11883-5. PubMed ID: 18702490 [TBL] [Abstract][Full Text] [Related]
3. A kinetic study of the CH2OO Criegee intermediate self-reaction, reaction with SO2 and unimolecular reaction using cavity ring-down spectroscopy. Chhantyal-Pun R; Davey A; Shallcross DE; Percival CJ; Orr-Ewing AJ Phys Chem Chem Phys; 2015 Feb; 17(5):3617-26. PubMed ID: 25553776 [TBL] [Abstract][Full Text] [Related]
4. Perspective: Spectroscopy and kinetics of small gaseous Criegee intermediates. Lee YP J Chem Phys; 2015 Jul; 143(2):020901. PubMed ID: 26178082 [TBL] [Abstract][Full Text] [Related]
5. Direct Probing of Criegee Intermediates from Gas-Phase Ozonolysis Using Chemical Ionization Mass Spectrometry. Berndt T; Herrmann H; Kurtén T J Am Chem Soc; 2017 Sep; 139(38):13387-13392. PubMed ID: 28853879 [TBL] [Abstract][Full Text] [Related]
6. Infrared detection of Criegee intermediates formed during the ozonolysis of β-pinene and their reactivity towards sulfur dioxide. Ahrens J; Carlsson PT; Hertl N; Olzmann M; Pfeifle M; Wolf JL; Zeuch T Angew Chem Int Ed Engl; 2014 Jan; 53(3):715-9. PubMed ID: 24402798 [TBL] [Abstract][Full Text] [Related]
7. Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene. Nguyen TB; Tyndall GS; Crounse JD; Teng AP; Bates KH; Schwantes RH; Coggon MM; Zhang L; Feiner P; Milller DO; Skog KM; Rivera-Rios JC; Dorris M; Olson KF; Koss A; Wild RJ; Brown SS; Goldstein AH; de Gouw JA; Brune WH; Keutsch FN; Seinfeld JH; Wennberg PO Phys Chem Chem Phys; 2016 Apr; 18(15):10241-54. PubMed ID: 27021601 [TBL] [Abstract][Full Text] [Related]
8. Direct kinetic measurements of reactions between the simplest Criegee intermediate CH2OO and alkenes. Buras ZJ; Elsamra RM; Jalan A; Middaugh JE; Green WH J Phys Chem A; 2014 Mar; 118(11):1997-2006. PubMed ID: 24559303 [TBL] [Abstract][Full Text] [Related]
9. Direct measurement of Criegee intermediate (CH2OO) reactions with acetone, acetaldehyde, and hexafluoroacetone. Taatjes CA; Welz O; Eskola AJ; Savee JD; Osborn DL; Lee EP; Dyke JM; Mok DW; Shallcross DE; Percival CJ Phys Chem Chem Phys; 2012 Aug; 14(30):10391-400. PubMed ID: 22481381 [TBL] [Abstract][Full Text] [Related]
11. Oligomerization reaction of the Criegee intermediate leads to secondary organic aerosol formation in ethylene ozonolysis. Sakamoto Y; Inomata S; Hirokawa J J Phys Chem A; 2013 Dec; 117(48):12912-21. PubMed ID: 24200348 [TBL] [Abstract][Full Text] [Related]
12. Direct Determination of the Simplest Criegee Intermediate (CH2OO) Self Reaction Rate. Buras ZJ; Elsamra RM; Green WH J Phys Chem Lett; 2014 Jul; 5(13):2224-8. PubMed ID: 26279538 [TBL] [Abstract][Full Text] [Related]
13. Kinetics of the unimolecular reaction of CH2OO and the bimolecular reactions with the water monomer, acetaldehyde and acetone under atmospheric conditions. Berndt T; Kaethner R; Voigtländer J; Stratmann F; Pfeifle M; Reichle P; Sipilä M; Kulmala M; Olzmann M Phys Chem Chem Phys; 2015 Aug; 17(30):19862-73. PubMed ID: 26159709 [TBL] [Abstract][Full Text] [Related]
14. Atmospheric Chemistry of Criegee Intermediates: Unimolecular Reactions and Reactions with Water. Long B; Bao JL; Truhlar DG J Am Chem Soc; 2016 Nov; 138(43):14409-14422. PubMed ID: 27682870 [TBL] [Abstract][Full Text] [Related]
15. Kinetics of a Criegee intermediate that would survive high humidity and may oxidize atmospheric SO2. Huang HL; Chao W; Lin JJ Proc Natl Acad Sci U S A; 2015 Sep; 112(35):10857-62. PubMed ID: 26283390 [TBL] [Abstract][Full Text] [Related]
16. Stabilization of the Simplest Criegee Intermediate from the Reaction between Ozone and Ethylene: A High-Level Quantum Chemical and Kinetic Analysis of Ozonolysis. Nguyen TL; Lee H; Matthews DA; McCarthy MC; Stanton JF J Phys Chem A; 2015 Jun; 119(22):5524-33. PubMed ID: 25945650 [TBL] [Abstract][Full Text] [Related]
17. Probing Criegee intermediate reactions with methanol by FTMW spectroscopy. Cabezas C; Endo Y Phys Chem Chem Phys; 2020 Jun; 22(24):13756-13763. PubMed ID: 32538397 [TBL] [Abstract][Full Text] [Related]
18. The Criegee intermediate-formic acid reaction explored by rotational spectroscopy. Cabezas C; Endo Y Phys Chem Chem Phys; 2019 Aug; 21(33):18059-18064. PubMed ID: 31378795 [TBL] [Abstract][Full Text] [Related]
19. Structure-dependent reactivity of Criegee intermediates studied with spectroscopic methods. Jr-Min Lin J; Chao W Chem Soc Rev; 2017 Dec; 46(24):7483-7497. PubMed ID: 28840926 [TBL] [Abstract][Full Text] [Related]
20. Reactivity and internal dynamics in the Criegee intermediate CH Cabezas C; Daly AM; Endo Y Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 260():119945. PubMed ID: 34020382 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]