These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 26601150)

  • 21. Green, catalytic oxidation of alcohols in water.
    ten Brink GJ ; Arends IW; Sheldon RA
    Science; 2000 Mar; 287(5458):1636-9. PubMed ID: 10698735
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Al-Containing Silicates Modified with Organic Ligands and SnO
    Ma J; Wu Y; Pan Q; Wang X; Li X; Li Q; Xu X; Yao Y; Sun Y
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770394
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sequential Connection of Mutually Exclusive Catalytic Reactions by a Method Controlling the Presence of an MOF Catalyst: One-Pot Oxidation of Alcohols to Carboxylic Acids.
    Kim S; Lee HE; Suh JM; Lim MH; Kim M
    Inorg Chem; 2020 Dec; 59(23):17573-17582. PubMed ID: 33216548
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Silver-Catalyzed Decarboxylative Allylation of Aliphatic Carboxylic Acids in Aqueous Solution.
    Cui L; Chen H; Liu C; Li C
    Org Lett; 2016 May; 18(9):2188-91. PubMed ID: 27065060
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Copper-Catalyzed Oxidation of Alcohols to Aldehydes and Ketones: An Efficient, Aerobic Alternative.
    Marko IE; Giles PR; Tsukazaki M; Brown SM; Urch CJ
    Science; 1996 Dec; 274(5295):2044-6. PubMed ID: 8953027
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An efficient and practical system for the catalytic oxidation of alcohols, aldehydes, and alpha,beta-unsaturated carboxylic acids.
    Grill JM; Ogle JW; Miller SA
    J Org Chem; 2006 Dec; 71(25):9291-6. PubMed ID: 17137354
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Homogeneous palladium catalyst suppressing Pd black formation in air oxidation of alcohols.
    Iwasawa T; Tokunaga M; Obora Y; Tsuji Y
    J Am Chem Soc; 2004 Jun; 126(21):6554-5. PubMed ID: 15161274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Efficient and Highly Selective Solvent-Free Oxidation of Primary Alcohols to Aldehydes Using Bucky Nanodiamond.
    Lin Y; Wu KT; Yu L; Heumann S; Su DS
    ChemSusChem; 2017 Sep; 10(17):3497-3505. PubMed ID: 28665485
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A safe and efficient flow oxidation of aldehydes with O2.
    Vanoye L; Aloui A; Pablos M; Philippe R; Percheron A; Favre-Réguillon A; de Bellefon C
    Org Lett; 2013 Dec; 15(23):5978-81. PubMed ID: 24266859
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Heterogeneously Catalyzed Aerobic Oxidation of Sulfides with a BaRuO
    Kamata K; Sugahara K; Kato Y; Muratsugu S; Kumagai Y; Oba F; Hara M
    ACS Appl Mater Interfaces; 2018 Jul; 10(28):23792-23801. PubMed ID: 29983051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Knoevenagel reaction in water catalyzed by amine supported on silica gel.
    Isobe K; Hoshi T; Suzuki T; Hagiwara H
    Mol Divers; 2005; 9(4):317-20. PubMed ID: 16311808
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aerobic oxidative amidation of aromatic and cinnamic aldehydes with secondary amines by CuI/2-pyridonate catalytic system.
    Zhu M; Fujita K; Yamaguchi R
    J Org Chem; 2012 Oct; 77(20):9102-9. PubMed ID: 23006061
    [TBL] [Abstract][Full Text] [Related]  

  • 33. TEMPO/HCl/NaNO2 catalyst: a transition-metal-free approach to efficient aerobic oxidation of alcohols to aldehydes and ketones under mild conditions.
    Wang X; Liu R; Jin Y; Liang X
    Chemistry; 2008; 14(9):2679-85. PubMed ID: 18293352
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zirconium-catalyzed asymmetric Kabachnik-Fields reactions of aromatic and aliphatic aldehydes.
    Dai Y; Zheng L; Chakraborty D; Borhan B; Wulff WD
    Chem Sci; 2021 Sep; 12(37):12333-12345. PubMed ID: 34603663
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of an amphiphilic resin-dispersion of nanopalladium and nanoplatinum catalysts: design, preparation, and their use in green organic transformations.
    Uozumi Y; Yamada YM
    Chem Rec; 2009; 9(1):51-65. PubMed ID: 19243076
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Iron(II)-Catalyzed Biomimetic Aerobic Oxidation of Alcohols.
    Guðmundsson A; Schlipköter KE; Bäckvall JE
    Angew Chem Int Ed Engl; 2020 Mar; 59(13):5403-5406. PubMed ID: 31999013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Reinvestigation of the Organocatalyzed Aerobic Oxidation of Aldehydes to Acids.
    Vanoye L; Abdelaal M; Grundhauser K; Guicheret B; Fongarland P; De Bellefon C; Favre-Réguillon A
    Org Lett; 2019 Dec; 21(24):10134-10138. PubMed ID: 31808703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Base-catalyzed efficient tandem [3 + 3] and [3 + 2 + 1] annulation-aerobic oxidative benzannulations.
    Diallo A; Zhao YL; Wang H; Li SS; Ren CQ; Liu Q
    Org Lett; 2012 Nov; 14(22):5776-9. PubMed ID: 23126321
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Carbon-Carbon Bond Formation and Hydrogen Production in the Ketonization of Aldehydes.
    Orozco LM; Renz M; Corma A
    ChemSusChem; 2016 Sep; 9(17):2430-42. PubMed ID: 27539722
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recyclable Mitsunobu reagents: catalytic Mitsunobu reactions with an iron catalyst and atmospheric oxygen.
    Hirose D; Taniguchi T; Ishibashi H
    Angew Chem Int Ed Engl; 2013 Apr; 52(17):4613-7. PubMed ID: 23468412
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.