BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 26601246)

  • 1. Rationally designed graphene-nanotube 3D architectures with a seamless nodal junction for efficient energy conversion and storage.
    Xue Y; Ding Y; Niu J; Xia Z; Roy A; Chen H; Qu J; Wang ZL; Dai L
    Sci Adv; 2015 Sep; 1(8):e1400198. PubMed ID: 26601246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Self-supported Graphene/Carbon Nanotube Hollow Fiber for Integrated Energy Conversion and Storage.
    Liu K; Chen Z; Lv T; Yao Y; Li N; Li H; Chen T
    Nanomicro Lett; 2020 Feb; 12(1):64. PubMed ID: 34138272
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionalization of graphene for efficient energy conversion and storage.
    Dai L
    Acc Chem Res; 2013 Jan; 46(1):31-42. PubMed ID: 23030244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Freestanding aligned carbon nanotube array grown on a large-area single-layered graphene sheet for efficient dye-sensitized solar cell.
    Qiu L; Wu Q; Yang Z; Sun X; Zhang Y; Peng H
    Small; 2015 Mar; 11(9-10):1150-5. PubMed ID: 24889384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors.
    Zheng Q; Cai Z; Ma Z; Gong S
    ACS Appl Mater Interfaces; 2015 Feb; 7(5):3263-71. PubMed ID: 25625769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled multimodal hierarchically porous electrode self-assembly of electrochemically exfoliated graphene for fully solid-state flexible supercapacitor.
    Sari NP; Dutta D; Jamaluddin A; Chang JK; Su CY
    Phys Chem Chem Phys; 2017 Nov; 19(45):30381-30392. PubMed ID: 29119159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon Nanotube Fibers Decorated with MnO
    Zhang L; Zhang X; Wang J; Seveno D; Fransaer J; Locquet JP; Seo JW
    Molecules; 2021 Jun; 26(11):. PubMed ID: 34200479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel graphene/carbon nanotube composite fibers for efficient wire-shaped miniature energy devices.
    Sun H; You X; Deng J; Chen X; Yang Z; Ren J; Peng H
    Adv Mater; 2014 May; 26(18):2868-73. PubMed ID: 24464762
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable growth of CNTs on graphene as high-performance electrode material for supercapacitors.
    Yang ZY; Zhao YF; Xiao QQ; Zhang YX; Jing L; Yan YM; Sun KN
    ACS Appl Mater Interfaces; 2014 Jun; 6(11):8497-504. PubMed ID: 24833408
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeleton/skin structured (RGO/CNTs)@PANI composite fiber electrodes with excellent mechanical and electrochemical performance for all-solid-state symmetric supercapacitors.
    Liu D; Du P; Wei W; Wang H; Wang Q; Liu P
    J Colloid Interface Sci; 2018 Mar; 513():295-303. PubMed ID: 29156237
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Macroscopic Graphene Fibers Directly Assembled from CVD-Grown Fiber-Shaped Hollow Graphene Tubes.
    Chen T; Dai L
    Angew Chem Int Ed Engl; 2015 Dec; 54(49):14947-50. PubMed ID: 26473977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Highly conductive three-dimensional MnO2-carbon nanotube-graphene-Ni hybrid foam as a binder-free supercapacitor electrode.
    Zhu G; He Z; Chen J; Zhao J; Feng X; Ma Y; Fan Q; Wang L; Huang W
    Nanoscale; 2014 Jan; 6(2):1079-85. PubMed ID: 24296659
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Out-of-plane growth of CNTs on graphene for supercapacitor applications.
    Kim YS; Kumar K; Fisher FT; Yang EH
    Nanotechnology; 2012 Jan; 23(1):015301. PubMed ID: 22155846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vertically Aligned Graphene-Carbon Fiber Hybrid Electrodes with Superlong Cycling Stability for Flexible Supercapacitors.
    Cherusseri J; Sambath Kumar K; Pandey D; Barrios E; Thomas J
    Small; 2019 Oct; 15(44):e1902606. PubMed ID: 31512364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selected functionalization of continuous graphene fibers for integrated energy conversion and storage.
    Yao Y; Lv T; Li N; Chen Z; Zhang C; Chen T
    Sci Bull (Beijing); 2020 Mar; 65(6):486-495. PubMed ID: 36747438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Porous Graphene-Carbon Nanotube Scaffolds for Fiber Supercapacitors.
    Park H; Ambade RB; Noh SH; Eom W; Koh KH; Ambade SB; Lee WJ; Kim SH; Han TH
    ACS Appl Mater Interfaces; 2019 Mar; 11(9):9011-9022. PubMed ID: 30653285
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
    Xu Y; Lin Z; Huang X; Liu Y; Huang Y; Duan X
    ACS Nano; 2013 May; 7(5):4042-9. PubMed ID: 23550832
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Textile electrodes woven by carbon nanotube-graphene hybrid fibers for flexible electrochemical capacitors.
    Cheng H; Dong Z; Hu C; Zhao Y; Hu Y; Qu L; Chen N; Dai L
    Nanoscale; 2013 Apr; 5(8):3428-34. PubMed ID: 23475309
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ultrafast growth of carbon nanotubes on graphene for capacitive energy storage.
    Li Z; Yang B; Su Y; Wang H; Groeper J
    Nanotechnology; 2016 Jan; 27(2):025401. PubMed ID: 26630480
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Directly drawing self-assembled, porous, and monolithic graphene fiber from chemical vapor deposition grown graphene film and its electrochemical properties.
    Li X; Zhao T; Wang K; Yang Y; Wei J; Kang F; Wu D; Zhu H
    Langmuir; 2011 Oct; 27(19):12164-71. PubMed ID: 21875131
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.