BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 26601299)

  • 1. Optogenetic pacing in Drosophila melanogaster.
    Alex A; Li A; Tanzi RE; Zhou C
    Sci Adv; 2015 Oct; 1(9):e1500639. PubMed ID: 26601299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Non-invasive red-light optogenetic control of Drosophila cardiac function.
    Men J; Li A; Jerwick J; Li Z; Tanzi RE; Zhou C
    Commun Biol; 2020 Jun; 3(1):336. PubMed ID: 32601302
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developing Drosophila melanogaster Models for Imaging and Optogenetic Control of Cardiac Function.
    Gracheva E; Wang F; Matt A; Liang H; Fishman M; Zhou C
    J Vis Exp; 2022 Aug; (186):. PubMed ID: 36094265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systemic gene transfer enables optogenetic pacing of mouse hearts.
    Vogt CC; Bruegmann T; Malan D; Ottersbach A; Roell W; Fleischmann BK; Sasse P
    Cardiovasc Res; 2015 May; 106(2):338-43. PubMed ID: 25587047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic stimulation of Drosophila heart rate at different temperatures and Ca2+ concentrations.
    Zhu YC; Uradu H; Majeed ZR; Cooper RL
    Physiol Rep; 2016 Feb; 4(3):. PubMed ID: 26834237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real-time optical manipulation of cardiac conduction in intact hearts.
    Scardigli M; Müllenbroich C; Margoni E; Cannazzaro S; Crocini C; Ferrantini C; Coppini R; Yan P; Loew LM; Campione M; Bocchi L; Giulietti D; Cerbai E; Poggesi C; Bub G; Pavone FS; Sacconi L
    J Physiol; 2018 Sep; 596(17):3841-3858. PubMed ID: 29989169
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Drosophila Preparation and Longitudinal Imaging of Heart Function In Vivo Using Optical Coherence Microscopy (OCM).
    Men J; Jerwick J; Wu P; Chen M; Alex A; Ma Y; Tanzi RE; Li A; Zhou C
    J Vis Exp; 2016 Dec; (118):. PubMed ID: 28060288
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optogenetics for in vivo cardiac pacing and resynchronization therapies.
    Nussinovitch U; Gepstein L
    Nat Biotechnol; 2015 Jul; 33(7):750-4. PubMed ID: 26098449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetics in Drosophila Neuroscience.
    Riemensperger T; Kittel RJ; Fiala A
    Methods Mol Biol; 2016; 1408():167-75. PubMed ID: 26965122
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Software Architecture to Mimic a Ventricular Tachycardia in Intact Murine Hearts by Means of an All-Optical Platform.
    Giardini F; Biasci V; Scardigli M; Pavone FS; Bub G; Sacconi L
    Methods Protoc; 2019 Jan; 2(1):. PubMed ID: 31164591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sudden Heart Rate Reduction Upon Optogenetic Release of Acetylcholine From Cardiac Parasympathetic Neurons in Perfused Hearts.
    Moreno A; Endicott K; Skancke M; Dwyer MK; Brennan J; Efimov IR; Trachiotis G; Mendelowitz D; Kay MW
    Front Physiol; 2019; 10():16. PubMed ID: 30745877
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optogenetic cardiac pacing in cultured mouse embryos under imaging guidance.
    Lopez AL; Wang S; Larina IV
    J Biophotonics; 2020 Nov; 13(11):e202000223. PubMed ID: 32692902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Implantable Optogenetic Technology for Cardiovascular Research and Medicine.
    Madrid MK; Brennan JA; Yin RT; Knight HS; Efimov IR
    Front Physiol; 2021; 12():720190. PubMed ID: 34675815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. No light without the dark: Perspectives and hindrances for translation of cardiac optogenetics.
    Richter C; Bruegmann T
    Prog Biophys Mol Biol; 2020 Aug; 154():39-50. PubMed ID: 31515056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energy-Reduced Arrhythmia Termination Using Global Photostimulation in Optogenetic Murine Hearts.
    Quiñonez Uribe RA; Luther S; Diaz-Maue L; Richter C
    Front Physiol; 2018; 9():1651. PubMed ID: 30542292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac pacing using transmural multi-LED probes in channelrhodopsin-expressing mouse hearts.
    Zgierski-Johnston CM; Ayub S; Fernández MC; Rog-Zielinska EA; Barz F; Paul O; Kohl P; Ruther P
    Prog Biophys Mol Biol; 2020 Aug; 154():51-61. PubMed ID: 31738979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optogenetic sensors in the zebrafish heart: a novel in vivo electrophysiological tool to study cardiac arrhythmogenesis.
    van Opbergen CJM; Koopman CD; Kok BJM; Knöpfel T; Renninger SL; Orger MB; Vos MA; van Veen TAB; Bakkers J; de Boer TP
    Theranostics; 2018; 8(17):4750-4764. PubMed ID: 30279735
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The physiological response during optogenetic-based cardiac pacing in awake freely moving mice.
    Kaminosono J; Kambe Y; Tanimoto A; Kuwaki T; Yamashita A
    Front Physiol; 2023; 14():1130956. PubMed ID: 37736488
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cardiac optogenetics: the next frontier.
    Gruber A; Edri O; Gepstein L
    Europace; 2018 Dec; 20(12):1910-1918. PubMed ID: 29315402
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superior temporal resolution of Chronos versus channelrhodopsin-2 in an optogenetic model of the auditory brainstem implant.
    Hight AE; Kozin ED; Darrow K; Lehmann A; Boyden E; Brown MC; Lee DJ
    Hear Res; 2015 Apr; 322():235-41. PubMed ID: 25598479
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.