These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

780 related articles for article (PubMed ID: 26601312)

  • 1. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels.
    Hinton TJ; Jallerat Q; Palchesko RN; Park JH; Grodzicki MS; Shue HJ; Ramadan MH; Hudson AR; Feinberg AW
    Sci Adv; 2015 Oct; 1(9):e1500758. PubMed ID: 26601312
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-Fiber Embedded Hydrogel 3D Printing for Structural Reinforcement.
    Sun W; Tashman JW; Shiwarski DJ; Feinberg AW; Webster-Wood VA
    ACS Biomater Sci Eng; 2022 Jan; 8(1):303-313. PubMed ID: 34860495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Printing PDMS Elastomer in a Hydrophilic Support Bath via Freeform Reversible Embedding.
    Hinton TJ; Hudson A; Pusch K; Lee A; Feinberg AW
    ACS Biomater Sci Eng; 2016 Oct; 2(10):1781-1786. PubMed ID: 27747289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Printing of Vascular Tubes Using Bioelastomer Prepolymers by Freeform Reversible Embedding.
    Savoji H; Davenport Huyer L; Mohammadi MH; Lun Lai BF; Rafatian N; Bannerman D; Shoaib M; Bobicki ER; Ramachandran A; Radisic M
    ACS Biomater Sci Eng; 2020 Mar; 6(3):1333-1343. PubMed ID: 33455372
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FRESH 3D Bioprinting a Full-Size Model of the Human Heart.
    Mirdamadi E; Tashman JW; Shiwarski DJ; Palchesko RN; Feinberg AW
    ACS Biomater Sci Eng; 2020 Nov; 6(11):6453-6459. PubMed ID: 33449644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Continuous fiber extruder for desktop 3D printers toward long fiber embedded hydrogel 3D printing.
    Sun W; Feinberg A; Webster-Wood V
    HardwareX; 2022 Apr; 11():e00297. PubMed ID: 35509909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stereolithographic hydrogel printing of 3D culture chips with biofunctionalized complex 3D perfusion networks.
    Zhang R; Larsen NB
    Lab Chip; 2017 Dec; 17(24):4273-4282. PubMed ID: 29116271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Poloxamer/Poly(ethylene glycol) Self-Healing Hydrogel for High-Precision Freeform Reversible Embedding of Suspended Hydrogel.
    Colly A; Marquette C; Courtial EJ
    Langmuir; 2021 Apr; 37(14):4154-4162. PubMed ID: 33787263
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hybrid printing of mechanically and biologically improved constructs for cartilage tissue engineering applications.
    Xu T; Binder KW; Albanna MZ; Dice D; Zhao W; Yoo JJ; Atala A
    Biofabrication; 2013 Mar; 5(1):015001. PubMed ID: 23172542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cellulose nanocrystals as support nanomaterials for dual droplet-based freeform 3D printing.
    Yoon HS; Yang K; Kim YM; Nam K; Roh YH
    Carbohydr Polym; 2021 Nov; 272():118469. PubMed ID: 34420728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Direct-Ink-Write 3D Printing of Hydrogels into Biomimetic Soft Robots.
    Cheng Y; Chan KH; Wang XQ; Ding T; Li T; Lu X; Ho GW
    ACS Nano; 2019 Nov; 13(11):13176-13184. PubMed ID: 31625724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Supporting Nanoclay as Internal Scaffold Material for Direct Printing of Soft Hydrogel Composite Structures in Air.
    Jin Y; Liu C; Chai W; Compaan A; Huang Y
    ACS Appl Mater Interfaces; 2017 May; 9(20):17456-17465. PubMed ID: 28467835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs.
    Jung JW; Lee JS; Cho DW
    Sci Rep; 2016 Feb; 6():21685. PubMed ID: 26899876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large volume syringe pump extruder for desktop 3D printers.
    Pusch K; Hinton TJ; Feinberg AW
    HardwareX; 2018 Apr; 3():49-61. PubMed ID: 30498799
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 3D bioprinting of collagen to rebuild components of the human heart.
    Lee A; Hudson AR; Shiwarski DJ; Tashman JW; Hinton TJ; Yerneni S; Bliley JM; Campbell PG; Feinberg AW
    Science; 2019 Aug; 365(6452):482-487. PubMed ID: 31371612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freeform Perfusable Microfluidics Embedded in Hydrogel Matrices.
    Štumberger G; Vihar B
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30545119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of Freeze-FRESH Methodology for 3D Printing of Microporous Collagen Constructs.
    Sousa T; Kajave N; Dong P; Gu L; Florczyk S; Kishore V
    3D Print Addit Manuf; 2022 Oct; 9(5):411-424. PubMed ID: 36660295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogels as extracellular matrices for skeletal tissue engineering: state-of-the-art and novel application in organ printing.
    Fedorovich NE; Alblas J; de Wijn JR; Hennink WE; Verbout AJ; Dhert WJ
    Tissue Eng; 2007 Aug; 13(8):1905-25. PubMed ID: 17518748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Freeform, Reconfigurable Embedded Printing of All-Aqueous 3D Architectures.
    Luo G; Yu Y; Yuan Y; Chen X; Liu Z; Kong T
    Adv Mater; 2019 Dec; 31(49):e1904631. PubMed ID: 31609497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Freeform 3D printing of soft matters: recent advances in technology for biomedical engineering.
    Chen S; Tan WS; Bin Juhari MA; Shi Q; Cheng XS; Chan WL; Song J
    Biomed Eng Lett; 2020 Nov; 10(4):453-479. PubMed ID: 33194241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 39.