These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

452 related articles for article (PubMed ID: 26601358)

  • 41. Molecular dispersion spectroscopy for chemical sensing using chirped mid-infrared quantum cascade laser.
    Wysocki G; Weidmann D
    Opt Express; 2010 Dec; 18(25):26123-40. PubMed ID: 21164961
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Development of a passive optical heterodyne radiometer for near and mid-infrared spectroscopy.
    Sappey AD; Masterson BP
    Appl Opt; 2021 Feb; 60(4):884-893. PubMed ID: 33690394
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of the frequency stability of an optical frequency standard at 1.39 µm based upon noise-immune cavity-enhanced optical heterodyne molecular spectroscopy.
    Dinesan H; Fasci E; D'Addio A; Castrillo A; Gianfrani L
    Opt Express; 2015 Jan; 23(2):1757-66. PubMed ID: 25835931
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Hollow waveguide photomixing for quantum cascade laser heterodyne spectro-radiometry.
    Weidmann D; Perrett BJ; Macleod NA; Jenkins RM
    Opt Express; 2011 May; 19(10):9074-85. PubMed ID: 21643162
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Infrared heterodyne solar radiometry.
    McElroy JH
    Appl Opt; 1972 Jul; 11(7):1619-22. PubMed ID: 20119196
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Narrow laser-linewidth measurement using short delay self-heterodyne interferometry.
    Zhao Z; Bai Z; Jin D; Qi Y; Ding J; Yan B; Wang Y; Lu Z; Mildren RP
    Opt Express; 2022 Aug; 30(17):30600-30610. PubMed ID: 36242160
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Precision heterodyne oxygen-corrected spectrometry: vertical profiling of water and carbon dioxide in the troposphere and lower stratosphere.
    Bomse DS; Tso JE; Flores MM; Miller JH
    Appl Opt; 2020 Mar; 59(7):B10-B17. PubMed ID: 32225691
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Study on a new method for instrumental line shape measurement of spatial heterodyne interference spectrometer].
    Xiong W; Shi HL; Yu NH
    Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):267-71. PubMed ID: 25993862
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Infrared laser heterodyne systems.
    Parvitte B; Zéninari V; Thiébeaux C; Delahaigue A; Courtois D
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 Apr; 60(5):1193-213. PubMed ID: 15084339
    [TBL] [Abstract][Full Text] [Related]  

  • 50. "All-fiber" tunable laser in the 2 μm region, designed for CO2 detection.
    Pal A; Sen R; Bremer K; Yao S; Lewis E; Sun T; Grattan KT
    Appl Opt; 2012 Oct; 51(29):7011-5. PubMed ID: 23052080
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Surface-enhanced mid-infrared spectroscopy using a quantum cascade laser.
    Hasenkampf A; Kröger N; Schönhals A; Petrich W; Pucci A
    Opt Express; 2015 Mar; 23(5):5670-80. PubMed ID: 25836797
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Optical amplification enables a huge sensitivity improvement to laser heterodyne radiometers for high-resolution measurements of atmospheric gases.
    Deng H; Li R; Liu H; He Y; Yang C; Li X; Xu Z; Kan R
    Opt Lett; 2022 Sep; 47(17):4335-4338. PubMed ID: 36048647
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comb-calibrated sub-Doppler spectroscopy with an external-cavity quantum cascade laser at 7.7 μm.
    AlSaif B; Gatti D; Lamperti M; Laporta P; Farooq A; Marangoni M
    Opt Express; 2019 Aug; 27(17):23785-23790. PubMed ID: 31510278
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Compact, broadly tunable, mid-IR source for the spectroscopic investigation of molecular reference lines in the 27- to 33-THz range.
    Kaing T; Zondy JJ; Yelisseyev A; Lobanov S; Isaenko L
    IEEE Trans Ultrason Ferroelectr Freq Control; 2000; 47(2):506-12. PubMed ID: 18238574
    [TBL] [Abstract][Full Text] [Related]  

  • 55. All-fiber DFB laser operating at 2.8  μm.
    Bernier M; Michaud-Belleau V; Levasseur S; Fortin V; Genest J; Vallée R
    Opt Lett; 2015 Jan; 40(1):81-4. PubMed ID: 25531614
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Enhancing the sensitivity of mid-IR quantum cascade laser-based cavity-enhanced absorption spectroscopy using RF current perturbation.
    Manfred KM; Kirkbride JM; Ciaffoni L; Peverall R; Ritchie GA
    Opt Lett; 2014 Dec; 39(24):6811-4. PubMed ID: 25503003
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tunable Microcavity-Stabilized Quantum Cascade Laser for Mid-IR High-Resolution Spectroscopy and Sensing.
    Borri S; Siciliani de Cumis M; Insero G; Bartalini S; Cancio Pastor P; Mazzotti D; Galli I; Giusfredi G; Santambrogio G; Savchenkov A; Eliyahu D; Ilchenko V; Akikusa N; Matsko A; Maleki L; De Natale P
    Sensors (Basel); 2016 Feb; 16(2):238. PubMed ID: 26901199
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Sensitive Spectroscopy of Acetone Using a Widely Tunable External-Cavity Quantum Cascade Laser.
    Nadeem F; Mandon J; Khodabakhsh A; Cristescu SM; Harren FJM
    Sensors (Basel); 2018 Jun; 18(7):. PubMed ID: 29954082
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Tunable external cavity quantum cascade laser for the simultaneous determination of glucose and lactate in aqueous phase.
    Brandstetter M; Genner A; Anic K; Lendl B
    Analyst; 2010 Dec; 135(12):3260-5. PubMed ID: 21046025
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Application of High-Speed Quantum Cascade Detectors for Mid-Infrared, Broadband, High-Resolution Spectroscopy.
    Dougakiuchi T; Akikusa N
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502596
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.