These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 26601581)

  • 1. Considering genetic characteristics in German Holstein breeding programs.
    Segelke D; Täubert H; Reinhardt F; Thaller G
    J Dairy Sci; 2016 Jan; 99(1):458-67. PubMed ID: 26601581
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of gene editing versus conventional breeding to introgress the POLLED allele into the US dairy cattle population.
    Mueller ML; Cole JB; Sonstegard TS; Van Eenennaam AL
    J Dairy Sci; 2019 May; 102(5):4215-4226. PubMed ID: 30852022
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of breeding strategies for polledness in dairy cattle using a newly developed simulation framework for quantitative and Mendelian traits.
    Scheper C; Wensch-Dorendorf M; Yin T; Dressel H; Swalve H; König S
    Genet Sel Evol; 2016 Jun; 48(1):50. PubMed ID: 27357942
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Short communication: Phenotypic and genetic effects of the polled haplotype on yield, longevity, and fertility in US Brown Swiss, Holstein, and Jersey cattle.
    Cole JB; Null DJ
    J Dairy Sci; 2019 Sep; 102(9):8247-8250. PubMed ID: 31255269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenotypic and genetic effects of recessive haplotypes on yield, longevity, and fertility.
    Cole JB; Null DJ; VanRaden PM
    J Dairy Sci; 2016 Sep; 99(9):7274-7288. PubMed ID: 27394947
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prevalence of nine genetic defects in Chinese Holstein cattle.
    Khan MYA; Omar AI; He Y; Chen S; Zhang S; Xiao W; Zhang Y
    Vet Med Sci; 2021 Sep; 7(5):1728-1735. PubMed ID: 33991412
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of haplotypes associated with prenatal death in dairy cattle and identification of deleterious mutations in GART, SHBG and SLC37A2.
    Fritz S; Capitan A; Djari A; Rodriguez SC; Barbat A; Baur A; Grohs C; Weiss B; Boussaha M; Esquerré D; Klopp C; Rocha D; Boichard D
    PLoS One; 2013; 8(6):e65550. PubMed ID: 23762392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A simple strategy for managing many recessive disorders in a dairy cattle breeding program.
    Cole JB
    Genet Sel Evol; 2015 Nov; 47():94. PubMed ID: 26620491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technical note: Development and application of KASP assays for rapid screening of 8 genetic defects in Holstein cattle.
    Zhang Y; Liang D; Huang H; Yang Z; Wang Y; Yu Y; Liu L; Zhang S; Han J; Xiao W
    J Dairy Sci; 2020 Jan; 103(1):619-624. PubMed ID: 31704007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of selection index calculations to determine selection strategies in genomic breeding programs.
    König S; Swalve HH
    J Dairy Sci; 2009 Oct; 92(10):5292-303. PubMed ID: 19762847
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Haplotypes responsible for early embryonic lethality detected in Nordic Holsteins.
    Wu X; Mesbah-Uddin M; Guldbrandtsen B; Lund MS; Sahana G
    J Dairy Sci; 2019 Dec; 102(12):11116-11123. PubMed ID: 31548059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of a genomic breeding program for a moderately sized dairy cattle population.
    Reiner-Benaim A; Ezra E; Weller JI
    J Dairy Sci; 2017 Apr; 100(4):2892-2904. PubMed ID: 28189326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and economic evaluation of Japanese Black (Wagyu) cattle breeding schemes.
    Kahi AK; Hirooka H
    J Anim Sci; 2005 Sep; 83(9):2021-32. PubMed ID: 16100056
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Holstein Friesian Lethal Haplotype 5 (HH5) Results from a Complete Deletion of TBF1M and Cholesterol Deficiency (CDH) from an ERV-(LTR) Insertion into the Coding Region of APOB.
    Schütz E; Wehrhahn C; Wanjek M; Bortfeld R; Wemheuer WE; Beck J; Brenig B
    PLoS One; 2016; 11(4):e0154602. PubMed ID: 27128314
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The impact of 3 strategies for incorporating polled genetics into a dairy cattle breeding program on the overall herd genetic merit.
    Spurlock DM; Stock ML; Coetzee JF
    J Dairy Sci; 2014; 97(8):5265-74. PubMed ID: 24913645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Economic evaluation of genomic breeding programs.
    König S; Simianer H; Willam A
    J Dairy Sci; 2009 Jan; 92(1):382-91. PubMed ID: 19109296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genomic selection in dairy cattle simulated populations.
    Seno LO; Guidolin DGF; Aspilcueta-Borquis RR; Nascimento GBD; Silva TBRD; Oliveira HN; Munari DP
    J Dairy Res; 2018 May; 85(2):125-132. PubMed ID: 29785919
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic tools to improve reproduction traits in dairy cattle.
    Capitan A; Michot P; Baur A; Saintilan R; Hozé C; Valour D; Guillaume F; Boichon D; Barbat A; Boichard D; Schibler L; Fritz S
    Reprod Fertil Dev; 2014 Dec; 27(1):14-21. PubMed ID: 25472040
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genomic selection for tolerance to heat stress in Australian dairy cattle.
    Nguyen TTT; Bowman PJ; Haile-Mariam M; Pryce JE; Hayes BJ
    J Dairy Sci; 2016 Apr; 99(4):2849-2862. PubMed ID: 27037467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Management of lethal recessive alleles in beef cattle through the use of mate selection software.
    Upperman LR; Kinghorn BP; MacNeil MD; Van Eenennaam AL
    Genet Sel Evol; 2019 Aug; 51(1):36. PubMed ID: 31382878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.