These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 26601731)
1. Case study of an MBT plant producing SRF for cement kiln co-combustion, coupled with a bioreactor landfill for process residues. Grosso M; Dellavedova S; Rigamonti L; Scotti S Waste Manag; 2016 Jan; 47(Pt B):267-75. PubMed ID: 26601731 [TBL] [Abstract][Full Text] [Related]
2. Use of MRF residue as alternative fuel in cement production. Fyffe JR; Breckel AC; Townsend AK; Webber ME Waste Manag; 2016 Jan; 47(Pt B):276-84. PubMed ID: 26187294 [TBL] [Abstract][Full Text] [Related]
3. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK. Jeswani HK; Azapagic A Waste Manag; 2016 Apr; 50():346-63. PubMed ID: 26906085 [TBL] [Abstract][Full Text] [Related]
4. Potential SRF generation from a closed landfill in northern Italy. Passamani G; Ragazzi M; Torretta V Waste Manag; 2016 Jan; 47(Pt B):157-63. PubMed ID: 26209342 [TBL] [Abstract][Full Text] [Related]
5. An integrated appraisal of energy recovery options in the United Kingdom using solid recovered fuel derived from municipal solid waste. Garg A; Smith R; Hill D; Longhurst PJ; Pollard SJ; Simms NJ Waste Manag; 2009 Aug; 29(8):2289-97. PubMed ID: 19443201 [TBL] [Abstract][Full Text] [Related]
6. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy. Cimpan C; Wenzel H Waste Manag; 2013 Jul; 33(7):1648-58. PubMed ID: 23660494 [TBL] [Abstract][Full Text] [Related]
7. Life cycle costing of energy recovery from solid recovered fuel produced in MBT plants in Italy. Rigamonti L; Borghi G; Martignon G; Grosso M Waste Manag; 2019 Nov; 99():154-162. PubMed ID: 31479845 [TBL] [Abstract][Full Text] [Related]
8. Current issues on the production and utilization of medium-calorific solid recovered fuel: a case study on SRF for the HOTDISC technology. Pomberger R; Klampfl-Pernold H; Abl C Waste Manag Res; 2012 Apr; 30(4):413-20. PubMed ID: 22452954 [TBL] [Abstract][Full Text] [Related]
9. Classification and characterisation of SRF produced from different flows of processed MSW in the Navarra region and its co-combustion performance with olive tree pruning residues. Ramos Casado R; Arenales Rivera J; Borjabad García E; Escalada Cuadrado R; Fernández Llorente M; Bados Sevillano R; Pascual Delgado A Waste Manag; 2016 Jan; 47(Pt B):206-16. PubMed ID: 26072185 [TBL] [Abstract][Full Text] [Related]
10. Improvement of the management of residual waste in areas without thermal treatment facilities: A life cycle analysis of an Italian management district. Di Maria F; Micale C; Morettini E; Sisani L; Damiano R Waste Manag; 2015 Oct; 44():206-15. PubMed ID: 26184897 [TBL] [Abstract][Full Text] [Related]
11. The strategy for conservation non-renewable natural resources through producing and application solid recovery fuel in the cement industry: a case study for Lithuania. Pitak I; Rinkevičius D; Kalpokaitė-Dičkuvienė R; Baltušnikas A; Denafas G Environ Sci Pollut Res Int; 2022 Oct; 29(46):69618-69634. PubMed ID: 35576030 [TBL] [Abstract][Full Text] [Related]
12. A case-study of landfill minimization and material recovery via waste co-gasification in a new waste management scheme. Tanigaki N; Ishida Y; Osada M Waste Manag; 2015 Mar; 37():137-46. PubMed ID: 25182227 [TBL] [Abstract][Full Text] [Related]
13. Optimal utilization of waste-to-energy in an LCA perspective. Fruergaard T; Astrup T Waste Manag; 2011 Mar; 31(3):572-82. PubMed ID: 20937557 [TBL] [Abstract][Full Text] [Related]
14. Solid recovered fuels in the cement industry with special respect to hazardous waste. Thomanetz E Waste Manag Res; 2012 Apr; 30(4):404-12. PubMed ID: 22573713 [TBL] [Abstract][Full Text] [Related]
15. Comparison of fuel value and combustion characteristics of two different RDF samples. Sever Akdağ A; Atımtay A; Sanin FD Waste Manag; 2016 Jan; 47(Pt B):217-24. PubMed ID: 26360232 [TBL] [Abstract][Full Text] [Related]
16. Solid recovered fuel: An experiment on classification and potential applications. Bessi C; Lombardi L; Meoni R; Canovai A; Corti A Waste Manag; 2016 Jan; 47(Pt B):184-94. PubMed ID: 26298482 [TBL] [Abstract][Full Text] [Related]
17. Environmental impact of incineration of calorific industrial waste: rotary kiln vs. cement kiln. Vermeulen I; Van Caneghem J; Block C; Dewulf W; Vandecasteele C Waste Manag; 2012 Oct; 32(10):1853-63. PubMed ID: 22739430 [TBL] [Abstract][Full Text] [Related]
18. Impact of utilizing solid recovered fuel on the global warming potential of cement production and waste management system: A life cycle assessment approach. Khan MMH; Havukainen J; Horttanainen M Waste Manag Res; 2021 Apr; 39(4):561-572. PubMed ID: 33357123 [TBL] [Abstract][Full Text] [Related]
19. Energetic utilisation of refuse derived fuels from landfill mining. Rotheut M; Quicker P Waste Manag; 2017 Apr; 62():101-117. PubMed ID: 28228358 [TBL] [Abstract][Full Text] [Related]
20. Technical potential of electricity production from municipal solid waste disposed in the biggest cities in Brazil: landfill gas, biogas and thermal treatment. de Souza SN; Horttanainen M; Antonelli J; Klaus O; Lindino CA; Nogueira CE Waste Manag Res; 2014 Oct; 32(10):1015-23. PubMed ID: 25323146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]