These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 26601764)
1. Solid state fermentation for production of microbial cellulases: Recent advances and improvement strategies. Behera SS; Ray RC Int J Biol Macromol; 2016 May; 86():656-69. PubMed ID: 26601764 [TBL] [Abstract][Full Text] [Related]
2. Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Kumar R; Singh S; Singh OV J Ind Microbiol Biotechnol; 2008 May; 35(5):377-391. PubMed ID: 18338189 [TBL] [Abstract][Full Text] [Related]
3. A minimal set of bacterial cellulases for consolidated bioprocessing of lignocellulose. Liao H; Zhang XZ; Rollin JA; Zhang YH Biotechnol J; 2011 Nov; 6(11):1409-18. PubMed ID: 21751395 [TBL] [Abstract][Full Text] [Related]
4. Endowing non-cellulolytic microorganisms with cellulolytic activity aiming for consolidated bioprocessing. Yamada R; Hasunuma T; Kondo A Biotechnol Adv; 2013 Nov; 31(6):754-63. PubMed ID: 23473971 [TBL] [Abstract][Full Text] [Related]
5. Biochemical Conversion Processes of Lignocellulosic Biomass to Fuels and Chemicals - A Review. Brethauer S; Studer MH Chimia (Aarau); 2015; 69(10):572-81. PubMed ID: 26598400 [TBL] [Abstract][Full Text] [Related]
6. Consolidated bioprocessing of cellulosic biomass: an update. Lynd LR; van Zyl WH; McBride JE; Laser M Curr Opin Biotechnol; 2005 Oct; 16(5):577-83. PubMed ID: 16154338 [TBL] [Abstract][Full Text] [Related]
7. Cellulase production from Aspergillus niger MS82: effect of temperature and pH. Sohail M; Siddiqi R; Ahmad A; Khan SA N Biotechnol; 2009 Sep; 25(6):437-41. PubMed ID: 19552887 [TBL] [Abstract][Full Text] [Related]
8. Improvement of cellulase and xylanase production by solid-state fermentation of Stachybotrys microspora. Abdeljalil S; Saibi W; Ben Hmad I; Baklouti A; Ben Mahmoud F; Belghith H; Gargouri A Biotechnol Appl Biochem; 2014; 61(4):432-40. PubMed ID: 24372593 [TBL] [Abstract][Full Text] [Related]
9. Cellulase production by Penicillium funiculosum and its application in the hydrolysis of sugar cane bagasse for second generation ethanol production by fed batch operation. Maeda RN; Barcelos CA; Santa Anna LM; Pereira N J Biotechnol; 2013 Jan; 163(1):38-44. PubMed ID: 23123260 [TBL] [Abstract][Full Text] [Related]
10. Display of cellulases on the cell surface of Saccharomyces cerevisiae for high yield ethanol production from high-solid lignocellulosic biomass. Matano Y; Hasunuma T; Kondo A Bioresour Technol; 2012 Mar; 108():128-33. PubMed ID: 22265982 [TBL] [Abstract][Full Text] [Related]
11. Sequential solid-state and submerged cultivation of Aspergillus niger on sugarcane bagasse for the production of cellulase. Cunha FM; Esperança MN; Zangirolami TC; Badino AC; Farinas CS Bioresour Technol; 2012 May; 112():270-4. PubMed ID: 22409979 [TBL] [Abstract][Full Text] [Related]
12. A review of enzymes and microbes for lignocellulosic biorefinery and the possibility of their application to consolidated bioprocessing technology. Hasunuma T; Okazaki F; Okai N; Hara KY; Ishii J; Kondo A Bioresour Technol; 2013 May; 135():513-22. PubMed ID: 23195654 [TBL] [Abstract][Full Text] [Related]
13. [Progress and strategies on bioethanol production from lignocellulose by consolidated bioprocessing (CBP) using Saccharomyces cerevisiae]. Xu L; Shen Y; Bao X Sheng Wu Gong Cheng Xue Bao; 2010 Jul; 26(7):870-9. PubMed ID: 20954386 [TBL] [Abstract][Full Text] [Related]
14. An ascomycota coculture in batch bioreactor is better than polycultures for cellulase production. Hernández C; Milagres AMF; Vázquez-Marrufo G; Muñoz-Páez KM; García-Pérez JA; Alarcón E Folia Microbiol (Praha); 2018 Jul; 63(4):467-478. PubMed ID: 29423709 [TBL] [Abstract][Full Text] [Related]
15. The realm of cellulases in biorefinery development. Chandel AK; Chandrasekhar G; Silva MB; Silvério da Silva S Crit Rev Biotechnol; 2012 Sep; 32(3):187-202. PubMed ID: 21929293 [TBL] [Abstract][Full Text] [Related]
16. Redesigning the Aspergillus nidulans xylanase regulatory pathway to enhance cellulase production with xylose as the carbon and inducer source. Ballmann P; Lightfoot J; Müller M; Dröge S; Prade R Microb Cell Fact; 2019 Nov; 18(1):193. PubMed ID: 31699093 [TBL] [Abstract][Full Text] [Related]
17. Use of spectroscopic and imaging techniques to evaluate pretreated sugarcane bagasse as a substrate for cellulase production under solid-state fermentation. Rodríguez-Zúñiga UF; Bertucci Neto V; Couri S; Crestana S; Farinas CS Appl Biochem Biotechnol; 2014 Mar; 172(5):2348-62. PubMed ID: 24363237 [TBL] [Abstract][Full Text] [Related]
18. Enzyme research and applications in biotechnological intensification of biogas production. Parawira W Crit Rev Biotechnol; 2012 Jun; 32(2):172-86. PubMed ID: 21851320 [TBL] [Abstract][Full Text] [Related]
19. Cellulolytic enzyme production and enzymatic hydrolysis for second-generation bioethanol production. Wang M; Li Z; Fang X; Wang L; Qu Y Adv Biochem Eng Biotechnol; 2012; 128():1-24. PubMed ID: 22231654 [TBL] [Abstract][Full Text] [Related]
20. Simultaneous saccharification and co-fermentation of crystalline cellulose and sugar cane bagasse hemicellulose hydrolysate to lactate by a thermotolerant acidophilic Bacillus sp. Patel MA; Ou MS; Ingram LO; Shanmugam KT Biotechnol Prog; 2005; 21(5):1453-60. PubMed ID: 16209550 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]