These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Jumping robots: a biomimetic solution to locomotion across rough terrain. Armour R; Paskins K; Bowyer A; Vincent J; Megill W; Bomphrey R Bioinspir Biomim; 2007 Sep; 2(3):S65-82. PubMed ID: 17848786 [TBL] [Abstract][Full Text] [Related]
3. Jump stabilization and landing control by wing-spreading of a locust-inspired jumper. Beck A; Zaitsev V; Hanan UB; Kosa G; Ayali A; Weiss A Bioinspir Biomim; 2017 Oct; 12(6):066006. PubMed ID: 28914235 [TBL] [Abstract][Full Text] [Related]
4. On extracting design principles from biology: II. Case study-the effect of knee direction on bipedal robot running efficiency. Haberland M; Kim S Bioinspir Biomim; 2015 Feb; 10(1):016011. PubMed ID: 25643285 [TBL] [Abstract][Full Text] [Related]
5. Bio-inspired step-climbing in a hexapod robot. Chou YC; Yu WS; Huang KJ; Lin PC Bioinspir Biomim; 2012 Sep; 7(3):036008. PubMed ID: 22549014 [TBL] [Abstract][Full Text] [Related]
6. Performance analysis of jump-gliding locomotion for miniature robotics. Vidyasagar A; Zufferey JC; Floreano D; Kovač M Bioinspir Biomim; 2015 Mar; 10(2):025006. PubMed ID: 25811417 [TBL] [Abstract][Full Text] [Related]
7. Towards highly-tuned mobility in multiple domains with a dynamical legged platform. Miller BD; Clark JE Bioinspir Biomim; 2015 Jun; 10(4):046001. PubMed ID: 26080033 [TBL] [Abstract][Full Text] [Related]
8. Principles of appendage design in robots and animals determining terradynamic performance on flowable ground. Qian F; Zhang T; Korff W; Umbanhowar PB; Full RJ; Goldman DI Bioinspir Biomim; 2015 Oct; 10(5):056014. PubMed ID: 26448267 [TBL] [Abstract][Full Text] [Related]
9. A simple running model with rolling contact and its role as a template for dynamic locomotion on a hexapod robot. Huang KJ; Huang CK; Lin PC Bioinspir Biomim; 2014 Oct; 9(4):046004. PubMed ID: 25291720 [TBL] [Abstract][Full Text] [Related]
10. Goal-directed multimodal locomotion through coupling between mechanical and attractor selection dynamics. Nurzaman SG; Yu X; Kim Y; Iida F Bioinspir Biomim; 2015 Mar; 10(2):025004. PubMed ID: 25811228 [TBL] [Abstract][Full Text] [Related]
11. Design of a biped robot actuated by pneumatic artificial muscles. Liu Y; Zang X; Liu X; Wang L Biomed Mater Eng; 2015; 26 Suppl 1():S757-66. PubMed ID: 26406072 [TBL] [Abstract][Full Text] [Related]
12. Dynamics of underwater legged locomotion: modeling and experiments on an octopus-inspired robot. Calisti M; Corucci F; Arienti A; Laschi C Bioinspir Biomim; 2015 Jul; 10(4):046012. PubMed ID: 26226238 [TBL] [Abstract][Full Text] [Related]
13. Locomotion of inchworm-inspired robot made of smart soft composite (SSC). Wang W; Lee JY; Rodrigue H; Song SH; Chu WS; Ahn SH Bioinspir Biomim; 2014 Oct; 9(4):046006. PubMed ID: 25289658 [TBL] [Abstract][Full Text] [Related]
14. Bioinspired legged-robot based on large deformation of flexible skeleton. Mayyas M Bioinspir Biomim; 2014 Nov; 9(4):046013. PubMed ID: 25387137 [TBL] [Abstract][Full Text] [Related]
15. Multibody system dynamics for bio-inspired locomotion: from geometric structures to computational aspects. Boyer F; Porez M Bioinspir Biomim; 2015 Mar; 10(2):025007. PubMed ID: 25811531 [TBL] [Abstract][Full Text] [Related]
16. Design of a biomimetic robotic octopus arm. Laschi C; Mazzolai B; Mattoli V; Cianchetti M; Dario P Bioinspir Biomim; 2009 Mar; 4(1):015006. PubMed ID: 19258690 [TBL] [Abstract][Full Text] [Related]
17. Terradynamically streamlined shapes in animals and robots enhance traversability through densely cluttered terrain. Li C; Pullin AO; Haldane DW; Lam HK; Fearing RS; Full RJ Bioinspir Biomim; 2015 Jun; 10(4):046003. PubMed ID: 26098002 [TBL] [Abstract][Full Text] [Related]